Nuprl Lemma : rel_equivalent_weakening
∀[T:Type]. ∀[R1,R2:T ⟶ T ⟶ ℙ].  R1 
⇐⇒ R2 supposing R1 = R2 ∈ (T ⟶ T ⟶ ℙ)
Proof
Definitions occuring in Statement : 
rel_equivalent: R1 
⇐⇒ R2
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
rel_equivalent: R1 
⇐⇒ R2
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
and_wf, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
cut, 
introduction, 
axiomEquality, 
hypothesis, 
thin, 
rename, 
lambdaFormation, 
independent_pairFormation, 
dependent_set_memberEquality, 
hypothesisEquality, 
instantiate, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
functionEquality, 
applyEquality, 
lambdaEquality, 
cumulativity, 
universeEquality, 
because_Cache, 
setElimination, 
productElimination, 
setEquality, 
equalityTransitivity, 
equalitySymmetry, 
hyp_replacement, 
Error :applyLambdaEquality, 
functionExtensionality
Latex:
\mforall{}[T:Type].  \mforall{}[R1,R2:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    R1  \mLeftarrow{}{}\mRightarrow{}  R2  supposing  R1  =  R2
Date html generated:
2016_10_21-AM-09_43_33
Last ObjectModification:
2016_07_12-AM-05_04_09
Theory : relations
Home
Index