Nuprl Lemma : rel_implies_functionality

[T:Type]. ∀[A1,A2,B1,B2:T ⟶ T ⟶ ℙ].  (A1  A2  B1 => B2  {A1 => B1  A2 => B2})


Proof




Definitions occuring in Statement :  rel_rev_implies: R1  R2 rel_implies: R1 => R2 uall: [x:A]. B[x] prop: guard: {T} implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  rel_implies: R1 => R2 guard: {T} rel_rev_implies: R1  R2 uall: [x:A]. B[x] implies:  Q all: x:A. B[x] member: t ∈ T prop: infix_ap: y so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  all_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation applyEquality hypothesisEquality cut lemma_by_obid sqequalHypSubstitution isectElimination thin lambdaEquality functionEquality hypothesis cumulativity universeEquality dependent_functionElimination independent_functionElimination

Latex:
\mforall{}[T:Type].  \mforall{}[A1,A2,B1,B2:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    (A1  \mLeftarrow{}{}  A2  {}\mRightarrow{}  B1  =>  B2  {}\mRightarrow{}  \{A1  =>  B1  {}\mRightarrow{}  A2  =>  B2\})



Date html generated: 2016_05_14-AM-06_04_50
Last ObjectModification: 2015_12_26-AM-11_33_04

Theory : relations


Home Index