Step
*
1
of Lemma
stump'_property
1. T : Type
2. t : wfd-tree(T)
3. n : ℕ
4. s : ℕn ⟶ T
5. n = 0 ∈ ℤ
⊢ ↑empty-wfd-tree(t)
⇐⇒ (¬↑(stump(t) n s)) ∧ (0 < n
⇒ (↑(stump(t) (n - 1) s)))
BY
{ ((HypSubst' (-1) 0 THEN (RWO "stump-nil" 0 THENA Auto)) THEN BoolCase ⌜empty-wfd-tree(t)⌝⋅ THEN Auto) }
Latex:
Latex:
1. T : Type
2. t : wfd-tree(T)
3. n : \mBbbN{}
4. s : \mBbbN{}n {}\mrightarrow{} T
5. n = 0
\mvdash{} \muparrow{}empty-wfd-tree(t) \mLeftarrow{}{}\mRightarrow{} (\mneg{}\muparrow{}(stump(t) n s)) \mwedge{} (0 < n {}\mRightarrow{} (\muparrow{}(stump(t) (n - 1) s)))
By
Latex:
((HypSubst' (-1) 0 THEN (RWO "stump-nil" 0 THENA Auto))
THEN BoolCase \mkleeneopen{}empty-wfd-tree(t)\mkleeneclose{}\mcdot{}
THEN Auto)
Home
Index