Nuprl Lemma : stump'_property

T:Type. ∀t:wfd-tree(T). ∀n:ℕ. ∀s:ℕn ⟶ T.
  (↑(stump'(t) s) ⇐⇒ (¬↑(stump(t) s)) ∧ (0 <  (↑(stump(t) (n 1) s))))


Proof




Definitions occuring in Statement :  stump': stump'(t) stump: stump(t) wfd-tree: wfd-tree(T) int_seg: {i..j-} nat: assert: b less_than: a < b all: x:A. B[x] iff: ⇐⇒ Q not: ¬A implies:  Q and: P ∧ Q apply: a function: x:A ⟶ B[x] subtract: m natural_number: $n universe: Type
Definitions unfolded in proof :  all: x:A. B[x] stump': stump'(t) member: t ∈ T uall: [x:A]. B[x] nat: implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] prop: or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False le: A ≤ B less_than': less_than'(a;b) not: ¬A ge: i ≥  int_upper: {i...} subtype_rel: A ⊆B subtract: m iff: ⇐⇒ Q less_than: a < b squash: T rev_implies:  Q true: True decidable: Dec(P) sq_stable: SqStable(P) top: Top so_lambda: λ2x.t[x] so_apply: x[s] band: p ∧b q
Lemmas referenced :  eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int int_upper_subtype_nat false_wf le_wf nat_properties nequal-le-implies zero-add int_seg_wf nat_wf wfd-tree_wf int_subtype_base stump-nil subtype_rel_self subtype_rel_wf empty-wfd-tree_wf less_than_wf true_wf not_wf assert_wf stump_wf less_than_irreflexivity subtract_wf decidable__le not-le-2 sq_stable__le condition-implies-le minus-one-mul minus-one-mul-top minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le le-add-cancel subtype_rel_dep_function int_seg_subtype int_upper_wf add-mul-special zero-mul add-zero le-add-cancel2 decidable__lt not-lt-2 bnot_wf iff_wf iff_transitivity iff_weakening_uiff assert_of_band assert_of_bnot
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalRule cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename because_Cache hypothesis natural_numberEquality unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination dependent_pairFormation hypothesisEquality promote_hyp dependent_functionElimination instantiate cumulativity independent_functionElimination voidElimination hypothesis_subsumption dependent_set_memberEquality independent_pairFormation functionEquality universeEquality intEquality applyEquality hyp_replacement applyLambdaEquality imageElimination productEquality functionExtensionality minusEquality imageMemberEquality baseClosed addEquality lambdaEquality isect_memberEquality voidEquality multiplyEquality addLevel impliesFunctionality

Latex:
\mforall{}T:Type.  \mforall{}t:wfd-tree(T).  \mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  T.
    (\muparrow{}(stump'(t)  n  s)  \mLeftarrow{}{}\mRightarrow{}  (\mneg{}\muparrow{}(stump(t)  n  s))  \mwedge{}  (0  <  n  {}\mRightarrow{}  (\muparrow{}(stump(t)  (n  -  1)  s))))



Date html generated: 2017_04_14-AM-07_45_32
Last ObjectModification: 2017_02_27-PM-03_16_48

Theory : co-recursion


Home Index