Nuprl Lemma : stump_wf

[T:Type]. ∀[t:wfd-tree(T)].  (stump(t) ∈ n:ℕ ⟶ (ℕn ⟶ T) ⟶ 𝔹)


Proof




Definitions occuring in Statement :  stump: stump(t) wfd-tree: wfd-tree(T) int_seg: {i..j-} nat: bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T stump: stump(t) nat: so_lambda: λ2x.t[x] all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a exists: x:A. B[x] prop: or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False le: A ≤ B less_than': less_than'(a;b) not: ¬A ge: i ≥  int_upper: {i...} int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) iff: ⇐⇒ Q rev_implies:  Q subtype_rel: A ⊆B top: Top true: True sq_stable: SqStable(P) squash: T subtract: m so_apply: x[s]
Lemmas referenced :  wfd-tree-rec_wf nat_wf int_seg_wf bool_wf bfalse_wf eq_int_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int int_upper_subtype_nat false_wf le_wf nat_properties nequal-le-implies zero-add decidable__lt not-lt-2 add_functionality_wrt_le add-commutes le-add-cancel lelt_wf subtract_wf decidable__le not-le-2 sq_stable__le condition-implies-le minus-one-mul minus-one-mul-top minus-add minus-minus add-associates add-swap add-member-int_seg2 add-zero le-add-cancel2 wfd-tree_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin functionEquality hypothesis natural_numberEquality setElimination rename because_Cache cumulativity hypothesisEquality lambdaEquality lambdaFormation unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination dependent_pairFormation promote_hyp dependent_functionElimination instantiate independent_functionElimination voidElimination hypothesis_subsumption dependent_set_memberEquality independent_pairFormation applyEquality functionExtensionality isect_memberEquality voidEquality intEquality imageMemberEquality baseClosed imageElimination addEquality minusEquality axiomEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[t:wfd-tree(T)].    (stump(t)  \mmember{}  n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  T)  {}\mrightarrow{}  \mBbbB{})



Date html generated: 2017_04_14-AM-07_45_14
Last ObjectModification: 2017_02_27-PM-03_16_17

Theory : co-recursion


Home Index