Nuprl Lemma : wfd-tree-rec_wf

[X,T:Type]. ∀[b:X]. ∀[F:(T ⟶ X) ⟶ X]. ∀[t:wfd-tree(T)].  (wfd-tree-rec(b;r.F[r];t) ∈ X)


Proof




Definitions occuring in Statement :  wfd-tree-rec: wfd-tree-rec(b;r.F[r];t) wfd-tree: wfd-tree(T) uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  wfd-tree: wfd-tree(T) uall: [x:A]. B[x] member: t ∈ T wfd-tree-rec: wfd-tree-rec(b;r.F[r];t) so_lambda: λ2x.t[x] all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a bfalse: ff prop: so_apply: x[s] so_lambda: so_lambda(x,y,z.t[x; y; z]) exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False so_apply: x[s1;s2;s3]
Lemmas referenced :  W-rec_wf bool_wf eqtt_to_assert equal_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot W_wf ifthenelse_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality hypothesis lambdaEquality lambdaFormation unionElimination equalityElimination productElimination independent_isectElimination voidEquality equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination because_Cache dependent_pairFormation promote_hyp instantiate voidElimination applyEquality functionExtensionality functionEquality axiomEquality universeEquality isect_memberEquality

Latex:
\mforall{}[X,T:Type].  \mforall{}[b:X].  \mforall{}[F:(T  {}\mrightarrow{}  X)  {}\mrightarrow{}  X].  \mforall{}[t:wfd-tree(T)].    (wfd-tree-rec(b;r.F[r];t)  \mmember{}  X)



Date html generated: 2017_04_14-AM-07_45_11
Last ObjectModification: 2017_02_27-PM-03_16_11

Theory : co-recursion


Home Index