Nuprl Lemma : empty-wfd-tree_wf

[T:Type]. ∀[t:wfd-tree(T)].  (empty-wfd-tree(t) ∈ 𝔹)


Proof




Definitions occuring in Statement :  empty-wfd-tree: empty-wfd-tree(t) wfd-tree: wfd-tree(T) bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T empty-wfd-tree: empty-wfd-tree(t) so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  wfd-tree-rec_wf bool_wf btrue_wf bfalse_wf wfd-tree_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis hypothesisEquality lambdaEquality functionEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[t:wfd-tree(T)].    (empty-wfd-tree(t)  \mmember{}  \mBbbB{})



Date html generated: 2016_05_14-AM-06_18_02
Last ObjectModification: 2015_12_26-PM-00_03_07

Theory : co-recursion


Home Index