Nuprl Lemma : empty-wfd-tree_wf
∀[T:Type]. ∀[t:wfd-tree(T)].  (empty-wfd-tree(t) ∈ 𝔹)
Proof
Definitions occuring in Statement : 
empty-wfd-tree: empty-wfd-tree(t)
, 
wfd-tree: wfd-tree(T)
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
empty-wfd-tree: empty-wfd-tree(t)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
wfd-tree-rec_wf, 
bool_wf, 
btrue_wf, 
bfalse_wf, 
wfd-tree_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
hypothesisEquality, 
lambdaEquality, 
functionEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[t:wfd-tree(T)].    (empty-wfd-tree(t)  \mmember{}  \mBbbB{})
Date html generated:
2016_05_14-AM-06_18_02
Last ObjectModification:
2015_12_26-PM-00_03_07
Theory : co-recursion
Home
Index