Nuprl Lemma : stump-nil
∀T:Type. ∀t:wfd-tree(T). ∀s:ℕ0 ⟶ T.  (stump(t) 0 s ~ ¬bempty-wfd-tree(t))
Proof
Definitions occuring in Statement : 
stump: stump(t)
, 
empty-wfd-tree: empty-wfd-tree(t)
, 
wfd-tree: wfd-tree(T)
, 
int_seg: {i..j-}
, 
bnot: ¬bb
, 
all: ∀x:A. B[x]
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
universe: Type
, 
sqequal: s ~ t
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
nat: ℕ
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_apply: x[s]
, 
stump: stump(t)
, 
top: Top
, 
empty-wfd-tree: empty-wfd-tree(t)
, 
bnot: ¬bb
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
eq_int: (i =z j)
, 
subtract: n - m
, 
bfalse: ff
, 
guard: {T}
, 
sq_type: SQType(T)
Lemmas referenced : 
subtype_base_sq, 
bool_subtype_base, 
wfd-tree-induction, 
all_wf, 
int_seg_wf, 
equal_wf, 
bool_wf, 
false_wf, 
le_wf, 
bnot_wf, 
empty-wfd-tree_wf, 
wfd-tree_wf, 
wfd_tree_rec_leaf_lemma, 
bfalse_wf, 
wfd_tree_rec_node_lemma, 
btrue_wf, 
stump_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
thin, 
instantiate, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
because_Cache, 
independent_isectElimination, 
hypothesis, 
hypothesisEquality, 
dependent_functionElimination, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
natural_numberEquality, 
cumulativity, 
applyEquality, 
dependent_set_memberEquality, 
independent_pairFormation, 
independent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality
Latex:
\mforall{}T:Type.  \mforall{}t:wfd-tree(T).  \mforall{}s:\mBbbN{}0  {}\mrightarrow{}  T.    (stump(t)  0  s  \msim{}  \mneg{}\msubb{}empty-wfd-tree(t))
Date html generated:
2016_05_14-AM-06_18_19
Last ObjectModification:
2015_12_26-PM-00_03_00
Theory : co-recursion
Home
Index