Nuprl Lemma : stump-nil

T:Type. ∀t:wfd-tree(T). ∀s:ℕ0 ⟶ T.  (stump(t) ~ ¬bempty-wfd-tree(t))


Proof




Definitions occuring in Statement :  stump: stump(t) empty-wfd-tree: empty-wfd-tree(t) wfd-tree: wfd-tree(T) int_seg: {i..j-} bnot: ¬bb all: x:A. B[x] apply: a function: x:A ⟶ B[x] natural_number: $n universe: Type sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a so_lambda: λ2x.t[x] nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: so_apply: x[s] stump: stump(t) top: Top empty-wfd-tree: empty-wfd-tree(t) bnot: ¬bb ifthenelse: if then else fi  btrue: tt eq_int: (i =z j) subtract: m bfalse: ff guard: {T} sq_type: SQType(T)
Lemmas referenced :  subtype_base_sq bool_subtype_base wfd-tree-induction all_wf int_seg_wf equal_wf bool_wf false_wf le_wf bnot_wf empty-wfd-tree_wf wfd-tree_wf wfd_tree_rec_leaf_lemma bfalse_wf wfd_tree_rec_node_lemma btrue_wf stump_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut thin instantiate lemma_by_obid sqequalHypSubstitution isectElimination because_Cache independent_isectElimination hypothesis hypothesisEquality dependent_functionElimination sqequalRule lambdaEquality functionEquality natural_numberEquality cumulativity applyEquality dependent_set_memberEquality independent_pairFormation independent_functionElimination isect_memberEquality voidElimination voidEquality equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}T:Type.  \mforall{}t:wfd-tree(T).  \mforall{}s:\mBbbN{}0  {}\mrightarrow{}  T.    (stump(t)  0  s  \msim{}  \mneg{}\msubb{}empty-wfd-tree(t))



Date html generated: 2016_05_14-AM-06_18_19
Last ObjectModification: 2015_12_26-PM-00_03_00

Theory : co-recursion


Home Index