Nuprl Lemma : wfd_tree_rec_node_lemma
∀F,f,F,b:Top.  (wfd-tree-rec(b;r.F[r];Wsup(ff;f)) ~ F[λx.wfd-tree-rec(b;r.F[r];f x)])
Proof
Definitions occuring in Statement : 
wfd-tree-rec: wfd-tree-rec(b;r.F[r];t)
, 
Wsup: Wsup(a;b)
, 
bfalse: ff
, 
top: Top
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
apply: f a
, 
lambda: λx.A[x]
, 
sqequal: s ~ t
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
wfd-tree-rec: wfd-tree-rec(b;r.F[r];t)
, 
W-rec: W-rec(a,f,r.F[a; f; r];w)
, 
Wsup: Wsup(a;b)
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
Lemmas referenced : 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
hypothesis, 
lemma_by_obid, 
sqequalRule
Latex:
\mforall{}F,f,F,b:Top.    (wfd-tree-rec(b;r.F[r];Wsup(ff;f))  \msim{}  F[\mlambda{}x.wfd-tree-rec(b;r.F[r];f  x)])
Date html generated:
2016_05_14-AM-06_17_58
Last ObjectModification:
2015_12_26-PM-00_03_17
Theory : co-recursion
Home
Index