Nuprl Lemma : wfd_tree_rec_node_lemma

F,f,F,b:Top.  (wfd-tree-rec(b;r.F[r];Wsup(ff;f)) F[λx.wfd-tree-rec(b;r.F[r];f x)])


Proof




Definitions occuring in Statement :  wfd-tree-rec: wfd-tree-rec(b;r.F[r];t) Wsup: Wsup(a;b) bfalse: ff top: Top so_apply: x[s] all: x:A. B[x] apply: a lambda: λx.A[x] sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T wfd-tree-rec: wfd-tree-rec(b;r.F[r];t) W-rec: W-rec(a,f,r.F[a; f; r];w) Wsup: Wsup(a;b) ifthenelse: if then else fi  bfalse: ff
Lemmas referenced :  top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis lemma_by_obid sqequalRule

Latex:
\mforall{}F,f,F,b:Top.    (wfd-tree-rec(b;r.F[r];Wsup(ff;f))  \msim{}  F[\mlambda{}x.wfd-tree-rec(b;r.F[r];f  x)])



Date html generated: 2016_05_14-AM-06_17_58
Last ObjectModification: 2015_12_26-PM-00_03_17

Theory : co-recursion


Home Index