Nuprl Lemma : wfd_tree_rec_leaf_lemma

z,F,b:Top.  (wfd-tree-rec(b;x.F[x];Wsup(tt;z)) b)


Proof




Definitions occuring in Statement :  wfd-tree-rec: wfd-tree-rec(b;r.F[r];t) Wsup: Wsup(a;b) btrue: tt top: Top so_apply: x[s] all: x:A. B[x] sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T wfd-tree-rec: wfd-tree-rec(b;r.F[r];t) W-rec: W-rec(a,f,r.F[a; f; r];w) Wsup: Wsup(a;b) ifthenelse: if then else fi  btrue: tt
Lemmas referenced :  top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis lemma_by_obid sqequalRule

Latex:
\mforall{}z,F,b:Top.    (wfd-tree-rec(b;x.F[x];Wsup(tt;z))  \msim{}  b)



Date html generated: 2016_05_14-AM-06_18_00
Last ObjectModification: 2015_12_26-PM-00_03_15

Theory : co-recursion


Home Index