Nuprl Lemma : wfd-tree-induction

[T:Type]
  ∀P:wfd-tree(T) ⟶ ℙ
    (P[Wsup(tt;⋅)]  (∀f:T ⟶ wfd-tree(T). ((∀b:T. P[f b])  P[Wsup(ff;f)]))  {∀t:wfd-tree(T). P[t]})


Proof




Definitions occuring in Statement :  wfd-tree: wfd-tree(T) Wsup: Wsup(a;b) bfalse: ff btrue: tt it: uall: [x:A]. B[x] prop: guard: {T} so_apply: x[s] all: x:A. B[x] implies:  Q apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] wfd-tree: wfd-tree(T) bool: 𝔹 ifthenelse: if then else fi  unit: Unit it: btrue: tt prop: bfalse: ff guard: {T} subtype_rel: A ⊆B squash: T true: True
Lemmas referenced :  W-induction all_wf wfd-tree_wf Wsup_wf bool_wf ifthenelse_wf bfalse_wf btrue_wf void_wf squash_wf true_wf W_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache sqequalRule hypothesisEquality independent_functionElimination unionElimination equalityElimination voidEquality lambdaEquality applyEquality functionExtensionality cumulativity hypothesis functionEquality instantiate universeEquality voidElimination addLevel hyp_replacement equalitySymmetry imageElimination equalityTransitivity natural_numberEquality imageMemberEquality baseClosed levelHypothesis

Latex:
\mforall{}[T:Type]
    \mforall{}P:wfd-tree(T)  {}\mrightarrow{}  \mBbbP{}
        (P[Wsup(tt;\mcdot{})]
        {}\mRightarrow{}  (\mforall{}f:T  {}\mrightarrow{}  wfd-tree(T).  ((\mforall{}b:T.  P[f  b])  {}\mRightarrow{}  P[Wsup(ff;f)]))
        {}\mRightarrow{}  \{\mforall{}t:wfd-tree(T).  P[t]\})



Date html generated: 2016_10_21-AM-09_47_05
Last ObjectModification: 2016_07_12-AM-05_07_07

Theory : co-recursion


Home Index