Nuprl Lemma : wfd-tree-induction
∀[T:Type]
  ∀P:wfd-tree(T) ⟶ ℙ
    (P[Wsup(tt;⋅)] 
⇒ (∀f:T ⟶ wfd-tree(T). ((∀b:T. P[f b]) 
⇒ P[Wsup(ff;f)])) 
⇒ {∀t:wfd-tree(T). P[t]})
Proof
Definitions occuring in Statement : 
wfd-tree: wfd-tree(T)
, 
Wsup: Wsup(a;b)
, 
bfalse: ff
, 
btrue: tt
, 
it: ⋅
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
guard: {T}
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
wfd-tree: wfd-tree(T)
, 
bool: 𝔹
, 
ifthenelse: if b then t else f fi 
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
prop: ℙ
, 
bfalse: ff
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
squash: ↓T
, 
true: True
Lemmas referenced : 
W-induction, 
all_wf, 
wfd-tree_wf, 
Wsup_wf, 
bool_wf, 
ifthenelse_wf, 
bfalse_wf, 
btrue_wf, 
void_wf, 
squash_wf, 
true_wf, 
W_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
sqequalRule, 
hypothesisEquality, 
independent_functionElimination, 
unionElimination, 
equalityElimination, 
voidEquality, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
cumulativity, 
hypothesis, 
functionEquality, 
instantiate, 
universeEquality, 
voidElimination, 
addLevel, 
hyp_replacement, 
equalitySymmetry, 
imageElimination, 
equalityTransitivity, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
levelHypothesis
Latex:
\mforall{}[T:Type]
    \mforall{}P:wfd-tree(T)  {}\mrightarrow{}  \mBbbP{}
        (P[Wsup(tt;\mcdot{})]
        {}\mRightarrow{}  (\mforall{}f:T  {}\mrightarrow{}  wfd-tree(T).  ((\mforall{}b:T.  P[f  b])  {}\mRightarrow{}  P[Wsup(ff;f)]))
        {}\mRightarrow{}  \{\mforall{}t:wfd-tree(T).  P[t]\})
Date html generated:
2016_10_21-AM-09_47_05
Last ObjectModification:
2016_07_12-AM-05_07_07
Theory : co-recursion
Home
Index