Step
*
of Lemma
absolutelyfree_wf
∀[T:Type]. (absolutelyfree{i:l}(T) ∈ ℙ')
BY
{ (ProveWfLemma THEN Try ((SubsumeC ⌜ℕ ⟶ ℕ⌝⋅ THEN Auto THEN DoSubsume THEN Auto))) }
1
1. T : Type
2. T ⊆r (ℕ ⟶ ℕ)
3. P : T ⟶ ℙ
4. f : T
5. P f
⊢ EquivRel(∃k:ℕ. ∀g:T. ((f = g ∈ (ℕk ⟶ ℕ)) 
⇒ (P g));x,y.True)
2
1. T : Type
2. T ⊆r (ℕ ⟶ ℕ)
3. ∀P:T ⟶ ℙ. ∀f:T.  ((P f) 
⇒ ⇃(∃k:ℕ. ∀g:T. ((f = g ∈ (ℕk ⟶ ℕ)) 
⇒ (P g))))
4. S : Type
5. S ⊆r (ℕ ⟶ ℕ)
6. P : S ⟶ ℙ
7. f : S
8. P f
⊢ EquivRel(∃k:ℕ. ∀g:S. ((f = g ∈ (ℕk ⟶ ℕ)) 
⇒ (P g));x,y.True)
Latex:
Latex:
\mforall{}[T:Type].  (absolutelyfree\{i:l\}(T)  \mmember{}  \mBbbP{}')
By
Latex:
(ProveWfLemma  THEN  Try  ((SubsumeC  \mkleeneopen{}\mBbbN{}  {}\mrightarrow{}  \mBbbN{}\mkleeneclose{}\mcdot{}  THEN  Auto  THEN  DoSubsume  THEN  Auto)))
Home
Index