Nuprl Lemma : absolutelyfree_wf

[T:Type]. (absolutelyfree{i:l}(T) ∈ ℙ')


Proof




Definitions occuring in Statement :  absolutelyfree: absolutelyfree{i:l}(T) uall: [x:A]. B[x] prop: member: t ∈ T universe: Type
Definitions unfolded in proof :  member: t ∈ T subtype_rel: A ⊆B uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] nat: uimplies: supposing a le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: all: x:A. B[x] absolutelyfree: absolutelyfree{i:l}(T) exists: x:A. B[x] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2]
Lemmas referenced :  subtype_rel_dep_function nat_wf int_seg_wf int_seg_subtype_nat false_wf subtype_rel_self subtype_rel_wf all_wf quotient_wf exists_wf equal_wf true_wf equiv_rel_true
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity hypothesisEquality applyEquality hypothesis sqequalHypSubstitution sqequalRule introduction extract_by_obid isectElimination thin lambdaEquality natural_numberEquality setElimination rename because_Cache independent_isectElimination independent_pairFormation lambdaFormation isect_memberFormation productEquality cumulativity functionEquality universeEquality instantiate functionExtensionality productElimination axiomEquality equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination

Latex:
\mforall{}[T:Type].  (absolutelyfree\{i:l\}(T)  \mmember{}  \mBbbP{}')



Date html generated: 2017_09_29-PM-06_10_36
Last ObjectModification: 2017_04_21-PM-00_37_41

Theory : continuity


Home Index