Step
*
of Lemma
afcs-contradicts-markov
(↓∃a:ℕ ⟶ ℕ. (is-absolutely-free{i:l}(a) ∧ init0(a) ∧ increasing-sequence(a)))
⇒ (¬(∀A:ℕ ⟶ ℙ. ((∀n:ℕ. ((A n) ∨ (¬(A n))))
⇒ (¬¬(∃n:ℕ. (A n)))
⇒ (∃n:ℕ. (A n)))))
BY
{ ((D 0 THENA At ⌜ℙ'⌝ Auto⋅)⋅ THEN (UnivCD THENA Auto) THEN (D 0 THENA Auto) THEN Unsquash) }
1
1. ∃a:ℕ ⟶ ℕ. (is-absolutely-free{i:l}(a) ∧ init0(a) ∧ increasing-sequence(a))
2. ∀A:ℕ ⟶ ℙ. ((∀n:ℕ. ((A n) ∨ (¬(A n))))
⇒ (¬¬(∃n:ℕ. (A n)))
⇒ (∃n:ℕ. (A n)))
⊢ False
Latex:
Latex:
(\mdownarrow{}\mexists{}a:\mBbbN{} {}\mrightarrow{} \mBbbN{}. (is-absolutely-free\{i:l\}(a) \mwedge{} init0(a) \mwedge{} increasing-sequence(a)))
{}\mRightarrow{} (\mneg{}(\mforall{}A:\mBbbN{} {}\mrightarrow{} \mBbbP{}. ((\mforall{}n:\mBbbN{}. ((A n) \mvee{} (\mneg{}(A n)))) {}\mRightarrow{} (\mneg{}\mneg{}(\mexists{}n:\mBbbN{}. (A n))) {}\mRightarrow{} (\mexists{}n:\mBbbN{}. (A n)))))
By
Latex:
((D 0 THENA At \mkleeneopen{}\mBbbP{}'\mkleeneclose{} Auto\mcdot{})\mcdot{} THEN (UnivCD THENA Auto) THEN (D 0 THENA Auto) THEN Unsquash)
Home
Index