Nuprl Lemma : afcs-contradicts-markov
(↓∃a:ℕ ⟶ ℕ. (is-absolutely-free{i:l}(a) ∧ init0(a) ∧ increasing-sequence(a)))
⇒ (¬(∀A:ℕ ⟶ ℙ. ((∀n:ℕ. ((A n) ∨ (¬(A n)))) 
⇒ (¬¬(∃n:ℕ. (A n))) 
⇒ (∃n:ℕ. (A n)))))
Proof
Definitions occuring in Statement : 
is-absolutely-free: is-absolutely-free{i:l}(f)
, 
init0: init0(a)
, 
increasing-sequence: increasing-sequence(a)
, 
nat: ℕ
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
squash: ↓T
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
and: P ∧ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
implies: P 
⇒ Q
, 
not: ¬A
, 
squash: ↓T
, 
false: False
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
or: P ∨ Q
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
nat: ℕ
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
Lemmas referenced : 
istype-nat, 
subtype_rel_self, 
istype-void, 
squash_wf, 
nat_wf, 
is-absolutely-free_wf, 
init0_wf, 
increasing-sequence_wf, 
ge_wf, 
nat_properties, 
decidable__or, 
le_wf, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
istype-le, 
not_wf, 
decidable__not, 
intformor_wf, 
int_formula_prop_or_lemma, 
Kripke2a, 
Kripke2b
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaFormation_alt, 
sqequalHypSubstitution, 
imageElimination, 
cut, 
hypothesis, 
sqequalRule, 
Error :functionIsType, 
introduction, 
extract_by_obid, 
Error :universeIsType, 
universeEquality, 
because_Cache, 
Error :unionIsType, 
applyEquality, 
hypothesisEquality, 
thin, 
instantiate, 
isectElimination, 
Error :productIsType, 
productEquality, 
cumulativity, 
functionEquality, 
dependent_functionElimination, 
Error :lambdaEquality_alt, 
setElimination, 
rename, 
Error :inhabitedIsType, 
independent_functionElimination, 
productElimination, 
Error :dependent_set_memberEquality_alt, 
natural_numberEquality, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
Error :dependent_pairFormation_alt, 
int_eqEquality, 
Error :isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation
Latex:
(\mdownarrow{}\mexists{}a:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  (is-absolutely-free\{i:l\}(a)  \mwedge{}  init0(a)  \mwedge{}  increasing-sequence(a)))
{}\mRightarrow{}  (\mneg{}(\mforall{}A:\mBbbN{}  {}\mrightarrow{}  \mBbbP{}.  ((\mforall{}n:\mBbbN{}.  ((A  n)  \mvee{}  (\mneg{}(A  n))))  {}\mRightarrow{}  (\mneg{}\mneg{}(\mexists{}n:\mBbbN{}.  (A  n)))  {}\mRightarrow{}  (\mexists{}n:\mBbbN{}.  (A  n)))))
Date html generated:
2019_06_20-PM-03_08_08
Last ObjectModification:
2019_01_17-PM-10_28_05
Theory : continuity
Home
Index