Nuprl Lemma : afcs-contradicts-markov

(↓∃a:ℕ ⟶ ℕ(is-absolutely-free{i:l}(a) ∧ init0(a) ∧ increasing-sequence(a)))
 (∀A:ℕ ⟶ ℙ((∀n:ℕ((A n) ∨ (A n))))  (¬¬(∃n:ℕ(A n)))  (∃n:ℕ(A n)))))


Proof




Definitions occuring in Statement :  is-absolutely-free: is-absolutely-free{i:l}(f) init0: init0(a) increasing-sequence: increasing-sequence(a) nat: prop: all: x:A. B[x] exists: x:A. B[x] not: ¬A squash: T implies:  Q or: P ∨ Q and: P ∧ Q apply: a function: x:A ⟶ B[x]
Definitions unfolded in proof :  implies:  Q not: ¬A squash: T false: False all: x:A. B[x] member: t ∈ T prop: or: P ∨ Q subtype_rel: A ⊆B uall: [x:A]. B[x] exists: x:A. B[x] and: P ∧ Q nat: ge: i ≥  decidable: Dec(P) uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top
Lemmas referenced :  istype-nat subtype_rel_self istype-void squash_wf nat_wf is-absolutely-free_wf init0_wf increasing-sequence_wf ge_wf nat_properties decidable__or le_wf decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf istype-le not_wf decidable__not intformor_wf int_formula_prop_or_lemma Kripke2a Kripke2b
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  sqequalHypSubstitution imageElimination cut hypothesis sqequalRule Error :functionIsType,  introduction extract_by_obid Error :universeIsType,  universeEquality because_Cache Error :unionIsType,  applyEquality hypothesisEquality thin instantiate isectElimination Error :productIsType,  productEquality cumulativity functionEquality dependent_functionElimination Error :lambdaEquality_alt,  setElimination rename Error :inhabitedIsType,  independent_functionElimination productElimination Error :dependent_set_memberEquality_alt,  natural_numberEquality unionElimination independent_isectElimination approximateComputation Error :dependent_pairFormation_alt,  int_eqEquality Error :isect_memberEquality_alt,  voidElimination independent_pairFormation

Latex:
(\mdownarrow{}\mexists{}a:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  (is-absolutely-free\{i:l\}(a)  \mwedge{}  init0(a)  \mwedge{}  increasing-sequence(a)))
{}\mRightarrow{}  (\mneg{}(\mforall{}A:\mBbbN{}  {}\mrightarrow{}  \mBbbP{}.  ((\mforall{}n:\mBbbN{}.  ((A  n)  \mvee{}  (\mneg{}(A  n))))  {}\mRightarrow{}  (\mneg{}\mneg{}(\mexists{}n:\mBbbN{}.  (A  n)))  {}\mRightarrow{}  (\mexists{}n:\mBbbN{}.  (A  n)))))



Date html generated: 2019_06_20-PM-03_08_08
Last ObjectModification: 2019_01_17-PM-10_28_05

Theory : continuity


Home Index