Nuprl Lemma : init0_wf

[a:ℕ ⟶ ℕ]. (init0(a) ∈ ℙ)


Proof




Definitions occuring in Statement :  init0: init0(a) nat: uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x]
Definitions unfolded in proof :  prop: implies:  Q not: ¬A false: False less_than': less_than'(a;b) and: P ∧ Q le: A ≤ B nat: init0: init0(a) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  le_wf false_wf nat_wf equal-wf-T-base
Rules used in proof :  functionEquality equalitySymmetry equalityTransitivity axiomEquality baseClosed lambdaFormation independent_pairFormation natural_numberEquality dependent_set_memberEquality hypothesisEquality functionExtensionality applyEquality hypothesis thin isectElimination sqequalHypSubstitution extract_by_obid sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[a:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}].  (init0(a)  \mmember{}  \mBbbP{})



Date html generated: 2017_04_21-AM-11_22_21
Last ObjectModification: 2017_04_20-PM-03_42_53

Theory : continuity


Home Index