Step
*
1
of Lemma
all-quotient-dependent
1. T : Type
2. canonicalizable(T)
3. S : T ⟶ ℙ
4. E : t:T ⟶ (S t) ⟶ (S t) ⟶ ℙ
5. ∀t:T. EquivRel(S t;a,b.E t a b)
6. ∀t:T. (x,y:S t//(E t x y))
⊢ f,g:∀t:T. (S t)//dep-fun-equiv(T;t,x,y.↓E t x y;f;g)
BY
{ (D 2
THEN RenameVar `c' 2
THEN (Assert ∀x:T. (c x ∈ T ⋂ Base) BY
(Auto THEN InstHyp [⌜x⌝] 3⋅ THEN Auto))
THEN PromoteHyp (-1) 3) }
1
1. T : Type
2. c : T ⟶ Base
3. ∀x:T. (c x ∈ T ⋂ Base)
4. ∀x:T. ((c x) = x ∈ T)
5. S : T ⟶ ℙ
6. E : t:T ⟶ (S t) ⟶ (S t) ⟶ ℙ
7. ∀t:T. EquivRel(S t;a,b.E t a b)
8. ∀t:T. (x,y:S t//(E t x y))
⊢ f,g:∀t:T. (S t)//dep-fun-equiv(T;t,x,y.↓E t x y;f;g)
Latex:
Latex:
1. T : Type
2. canonicalizable(T)
3. S : T {}\mrightarrow{} \mBbbP{}
4. E : t:T {}\mrightarrow{} (S t) {}\mrightarrow{} (S t) {}\mrightarrow{} \mBbbP{}
5. \mforall{}t:T. EquivRel(S t;a,b.E t a b)
6. \mforall{}t:T. (x,y:S t//(E t x y))
\mvdash{} f,g:\mforall{}t:T. (S t)//dep-fun-equiv(T;t,x,y.\mdownarrow{}E t x y;f;g)
By
Latex:
(D 2
THEN RenameVar `c' 2
THEN (Assert \mforall{}x:T. (c x \mmember{} T \mcap{} Base) BY
(Auto THEN InstHyp [\mkleeneopen{}x\mkleeneclose{}] 3\mcdot{} THEN Auto))
THEN PromoteHyp (-1) 3)
Home
Index