Nuprl Lemma : all-quotient-dependent

T:Type
  (canonicalizable(T)
   (∀S:T ⟶ ℙ. ∀E:t:T ⟶ S[t] ⟶ S[t] ⟶ ℙ.
        ((∀t:T. EquivRel(S t;a,b.E[t;a;b]))
         (∀t:T. (x,y:S[t]//E[t;x;y]) ⇐⇒ f,g:∀t:T. S[t]//dep-fun-equiv(T;t,x,y.↓E[t;x;y];f;g)))))


Proof




Definitions occuring in Statement :  dep-fun-equiv: dep-fun-equiv(X;x,a,b.E[x; a; b];f;g) equiv_rel: EquivRel(T;x,y.E[x; y]) quotient: x,y:A//B[x; y] canonicalizable: canonicalizable(T) prop: so_apply: x[s1;s2;s3] so_apply: x[s] all: x:A. B[x] iff: ⇐⇒ Q squash: T implies:  Q apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  ext-eq: A ≡ B dep-fun-equiv: dep-fun-equiv(X;x,a,b.E[x; a; b];f;g) true: True squash: T guard: {T} compose: g quotient: x,y:A//B[x; y] bfalse: ff ifthenelse: if then else fi  btrue: tt it: unit: Unit bool: 𝔹 isect2: T1 ⋂ T2 exists: x:A. B[x] canonicalizable: canonicalizable(T) so_lambda: so_lambda(x,y,z.t[x; y; z]) rev_implies:  Q uimplies: supposing a so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] subtype_rel: A ⊆B so_lambda: λ2x.t[x] uall: [x:A]. B[x] prop: member: t ∈ T and: P ∧ Q iff: ⇐⇒ Q implies:  Q all: x:A. B[x] so_apply: x[s] so_apply: x[s1;s2;s3]
Lemmas referenced :  quotient-squash bool_wf iff_weakening_equal true_wf equal_wf subtype_rel-equal quotient-member-eq equal-wf-base isect2_subtype_rel2 quotient-dep-function-subtype isect2_subtype_rel base_wf isect2_wf subtype_rel_dep_function canonicalizable_wf equiv_rel_wf subtype_rel_self equiv_rel_subtype equiv_rel_squash dep-fun-equiv-rel squash_wf dep-fun-equiv_wf quotient_wf all_wf
Rules used in proof :  hyp_replacement baseClosed imageMemberEquality natural_numberEquality imageElimination instantiate productEquality pertypeElimination pointwiseFunctionalityForEquality promote_hyp equalitySymmetry equalityTransitivity equalityElimination unionElimination isect_memberEquality rename productElimination universeEquality functionEquality independent_functionElimination dependent_functionElimination independent_isectElimination hypothesis because_Cache functionExtensionality applyEquality lambdaEquality hypothesisEquality cumulativity thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut independent_pairFormation lambdaFormation computationStep sqequalTransitivity sqequalReflexivity sqequalRule sqequalSubstitution

Latex:
\mforall{}T:Type
    (canonicalizable(T)
    {}\mRightarrow{}  (\mforall{}S:T  {}\mrightarrow{}  \mBbbP{}.  \mforall{}E:t:T  {}\mrightarrow{}  S[t]  {}\mrightarrow{}  S[t]  {}\mrightarrow{}  \mBbbP{}.
                ((\mforall{}t:T.  EquivRel(S  t;a,b.E[t;a;b]))
                {}\mRightarrow{}  (\mforall{}t:T.  (x,y:S[t]//E[t;x;y])  \mLeftarrow{}{}\mRightarrow{}  f,g:\mforall{}t:T.  S[t]//dep-fun-equiv(T;t,x,y.\mdownarrow{}E[t;x;y];f;g)))))



Date html generated: 2017_09_29-PM-06_07_42
Last ObjectModification: 2017_09_07-PM-03_38_22

Theory : continuity


Home Index