Nuprl Lemma : all-quotient-dependent
∀T:Type
  (canonicalizable(T)
  
⇒ (∀S:T ⟶ ℙ. ∀E:t:T ⟶ S[t] ⟶ S[t] ⟶ ℙ.
        ((∀t:T. EquivRel(S t;a,b.E[t;a;b]))
        
⇒ (∀t:T. (x,y:S[t]//E[t;x;y]) 
⇐⇒ f,g:∀t:T. S[t]//dep-fun-equiv(T;t,x,y.↓E[t;x;y];f;g)))))
Proof
Definitions occuring in Statement : 
dep-fun-equiv: dep-fun-equiv(X;x,a,b.E[x; a; b];f;g)
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
quotient: x,y:A//B[x; y]
, 
canonicalizable: canonicalizable(T)
, 
prop: ℙ
, 
so_apply: x[s1;s2;s3]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
squash: ↓T
, 
implies: P 
⇒ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
ext-eq: A ≡ B
, 
dep-fun-equiv: dep-fun-equiv(X;x,a,b.E[x; a; b];f;g)
, 
true: True
, 
squash: ↓T
, 
guard: {T}
, 
compose: f o g
, 
quotient: x,y:A//B[x; y]
, 
bfalse: ff
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
isect2: T1 ⋂ T2
, 
exists: ∃x:A. B[x]
, 
canonicalizable: canonicalizable(T)
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
rev_implies: P 
⇐ Q
, 
uimplies: b supposing a
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x y.t[x; y]
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
so_apply: x[s]
, 
so_apply: x[s1;s2;s3]
Lemmas referenced : 
quotient-squash, 
bool_wf, 
iff_weakening_equal, 
true_wf, 
equal_wf, 
subtype_rel-equal, 
quotient-member-eq, 
equal-wf-base, 
isect2_subtype_rel2, 
quotient-dep-function-subtype, 
isect2_subtype_rel, 
base_wf, 
isect2_wf, 
subtype_rel_dep_function, 
canonicalizable_wf, 
equiv_rel_wf, 
subtype_rel_self, 
equiv_rel_subtype, 
equiv_rel_squash, 
dep-fun-equiv-rel, 
squash_wf, 
dep-fun-equiv_wf, 
quotient_wf, 
all_wf
Rules used in proof : 
hyp_replacement, 
baseClosed, 
imageMemberEquality, 
natural_numberEquality, 
imageElimination, 
instantiate, 
productEquality, 
pertypeElimination, 
pointwiseFunctionalityForEquality, 
promote_hyp, 
equalitySymmetry, 
equalityTransitivity, 
equalityElimination, 
unionElimination, 
isect_memberEquality, 
rename, 
productElimination, 
universeEquality, 
functionEquality, 
independent_functionElimination, 
dependent_functionElimination, 
independent_isectElimination, 
hypothesis, 
because_Cache, 
functionExtensionality, 
applyEquality, 
lambdaEquality, 
hypothesisEquality, 
cumulativity, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
independent_pairFormation, 
lambdaFormation, 
computationStep, 
sqequalTransitivity, 
sqequalReflexivity, 
sqequalRule, 
sqequalSubstitution
Latex:
\mforall{}T:Type
    (canonicalizable(T)
    {}\mRightarrow{}  (\mforall{}S:T  {}\mrightarrow{}  \mBbbP{}.  \mforall{}E:t:T  {}\mrightarrow{}  S[t]  {}\mrightarrow{}  S[t]  {}\mrightarrow{}  \mBbbP{}.
                ((\mforall{}t:T.  EquivRel(S  t;a,b.E[t;a;b]))
                {}\mRightarrow{}  (\mforall{}t:T.  (x,y:S[t]//E[t;x;y])  \mLeftarrow{}{}\mRightarrow{}  f,g:\mforall{}t:T.  S[t]//dep-fun-equiv(T;t,x,y.\mdownarrow{}E[t;x;y];f;g)))))
Date html generated:
2017_09_29-PM-06_07_42
Last ObjectModification:
2017_09_07-PM-03_38_22
Theory : continuity
Home
Index