Nuprl Lemma : canonicalizable_wf
∀[T:Type]. (canonicalizable(T) ∈ ℙ)
Proof
Definitions occuring in Statement : 
canonicalizable: canonicalizable(T)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
canonicalizable: canonicalizable(T)
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
exists_wf, 
all_wf, 
equal-wf-base-T, 
base_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
functionEquality, 
hypothesisEquality, 
because_Cache, 
sqequalRule, 
Error :lambdaEquality_alt, 
applyEquality, 
hypothesis, 
Error :universeIsType, 
Error :functionIsType, 
universeEquality
Latex:
\mforall{}[T:Type].  (canonicalizable(T)  \mmember{}  \mBbbP{})
Date html generated:
2019_06_20-AM-11_28_12
Last ObjectModification:
2018_09_28-PM-02_27_43
Theory : call!by!value_2
Home
Index