Nuprl Lemma : canonicalizable_wf

[T:Type]. (canonicalizable(T) ∈ ℙ)


Proof




Definitions occuring in Statement :  canonicalizable: canonicalizable(T) uall: [x:A]. B[x] prop: member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] canonicalizable: canonicalizable(T) member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  exists_wf all_wf equal-wf-base-T base_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin functionEquality hypothesisEquality because_Cache sqequalRule Error :lambdaEquality_alt,  applyEquality hypothesis Error :universeIsType,  Error :functionIsType,  universeEquality

Latex:
\mforall{}[T:Type].  (canonicalizable(T)  \mmember{}  \mBbbP{})



Date html generated: 2019_06_20-AM-11_28_12
Last ObjectModification: 2018_09_28-PM-02_27_43

Theory : call!by!value_2


Home Index