Nuprl Lemma : dep-fun-equiv-rel

[X:Type]. ∀[A:X ⟶ Type]. ∀[E:x:X ⟶ A[x] ⟶ A[x] ⟶ ℙ].
  ((∀x:X. EquivRel(A[x];a,b.E[x;a;b]))  EquivRel(x:X ⟶ A[x];f,g.dep-fun-equiv(X;x,a,b.E[x;a;b];f;g)))


Proof




Definitions occuring in Statement :  dep-fun-equiv: dep-fun-equiv(X;x,a,b.E[x; a; b];f;g) equiv_rel: EquivRel(T;x,y.E[x; y]) uall: [x:A]. B[x] prop: so_apply: x[s1;s2;s3] so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q equiv_rel: EquivRel(T;x,y.E[x; y]) and: P ∧ Q dep-fun-equiv: dep-fun-equiv(X;x,a,b.E[x; a; b];f;g) refl: Refl(T;x,y.E[x; y]) all: x:A. B[x] member: t ∈ T so_apply: x[s] cand: c∧ B sym: Sym(T;x,y.E[x; y]) so_apply: x[s1;s2;s3] subtype_rel: A ⊆B prop: trans: Trans(T;x,y.E[x; y]) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] guard: {T}
Lemmas referenced :  subtype_rel_self equiv_rel_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  Error :lambdaFormation_alt,  independent_pairFormation sqequalRule because_Cache Error :functionIsType,  Error :universeIsType,  applyEquality hypothesisEquality cut hypothesis thin instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination Error :lambdaEquality_alt,  Error :inhabitedIsType,  universeEquality dependent_functionElimination productElimination independent_functionElimination

Latex:
\mforall{}[X:Type].  \mforall{}[A:X  {}\mrightarrow{}  Type].  \mforall{}[E:x:X  {}\mrightarrow{}  A[x]  {}\mrightarrow{}  A[x]  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}x:X.  EquivRel(A[x];a,b.E[x;a;b]))
    {}\mRightarrow{}  EquivRel(x:X  {}\mrightarrow{}  A[x];f,g.dep-fun-equiv(X;x,a,b.E[x;a;b];f;g)))



Date html generated: 2019_06_20-PM-00_32_56
Last ObjectModification: 2019_03_19-AM-10_42_34

Theory : quot_1


Home Index