Nuprl Lemma : dep-fun-equiv-rel
∀[X:Type]. ∀[A:X ⟶ Type]. ∀[E:x:X ⟶ A[x] ⟶ A[x] ⟶ ℙ].
((∀x:X. EquivRel(A[x];a,b.E[x;a;b]))
⇒ EquivRel(x:X ⟶ A[x];f,g.dep-fun-equiv(X;x,a,b.E[x;a;b];f;g)))
Proof
Definitions occuring in Statement :
dep-fun-equiv: dep-fun-equiv(X;x,a,b.E[x; a; b];f;g)
,
equiv_rel: EquivRel(T;x,y.E[x; y])
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
so_apply: x[s1;s2;s3]
,
so_apply: x[s]
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
implies: P
⇒ Q
,
equiv_rel: EquivRel(T;x,y.E[x; y])
,
and: P ∧ Q
,
dep-fun-equiv: dep-fun-equiv(X;x,a,b.E[x; a; b];f;g)
,
refl: Refl(T;x,y.E[x; y])
,
all: ∀x:A. B[x]
,
member: t ∈ T
,
so_apply: x[s]
,
cand: A c∧ B
,
sym: Sym(T;x,y.E[x; y])
,
so_apply: x[s1;s2;s3]
,
subtype_rel: A ⊆r B
,
prop: ℙ
,
trans: Trans(T;x,y.E[x; y])
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
guard: {T}
Lemmas referenced :
subtype_rel_self,
equiv_rel_wf,
istype-universe
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
Error :isect_memberFormation_alt,
Error :lambdaFormation_alt,
independent_pairFormation,
sqequalRule,
because_Cache,
Error :functionIsType,
Error :universeIsType,
applyEquality,
hypothesisEquality,
cut,
hypothesis,
thin,
instantiate,
introduction,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
Error :lambdaEquality_alt,
Error :inhabitedIsType,
universeEquality,
dependent_functionElimination,
productElimination,
independent_functionElimination
Latex:
\mforall{}[X:Type]. \mforall{}[A:X {}\mrightarrow{} Type]. \mforall{}[E:x:X {}\mrightarrow{} A[x] {}\mrightarrow{} A[x] {}\mrightarrow{} \mBbbP{}].
((\mforall{}x:X. EquivRel(A[x];a,b.E[x;a;b]))
{}\mRightarrow{} EquivRel(x:X {}\mrightarrow{} A[x];f,g.dep-fun-equiv(X;x,a,b.E[x;a;b];f;g)))
Date html generated:
2019_06_20-PM-00_32_56
Last ObjectModification:
2019_03_19-AM-10_42_34
Theory : quot_1
Home
Index