Nuprl Lemma : quotient-squash
∀[T:Type]. ∀[E:T ⟶ T ⟶ ℙ].  x,y:T//E[x;y] ≡ x,y:T//(↓E[x;y]) supposing EquivRel(T;x,y.E[x;y])
Proof
Definitions occuring in Statement : 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
quotient: x,y:A//B[x; y]
, 
ext-eq: A ≡ B
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
squash: ↓T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
implies: P 
⇒ Q
, 
ext-eq: A ≡ B
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
quotient: x,y:A//B[x; y]
, 
all: ∀x:A. B[x]
, 
squash: ↓T
, 
prop: ℙ
Lemmas referenced : 
equiv_rel_wf, 
equal-wf-base, 
quotient-member-eq, 
squash_wf, 
quotient_wf, 
equiv_rel_squash
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
independent_functionElimination, 
hypothesis, 
independent_pairFormation, 
pointwiseFunctionalityForEquality, 
independent_isectElimination, 
pertypeElimination, 
productElimination, 
because_Cache, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
imageMemberEquality, 
baseClosed, 
productEquality, 
universeEquality, 
imageElimination, 
independent_pairEquality, 
axiomEquality, 
isect_memberEquality, 
functionEquality, 
cumulativity
Latex:
\mforall{}[T:Type].  \mforall{}[E:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    x,y:T//E[x;y]  \mequiv{}  x,y:T//(\mdownarrow{}E[x;y])  supposing  EquivRel(T;x,y.E[x;y])
Date html generated:
2016_05_14-AM-06_08_07
Last ObjectModification:
2016_01_14-PM-07_33_19
Theory : quot_1
Home
Index