Nuprl Lemma : dep-fun-equiv_wf
∀[X:Type]. ∀[A:X ⟶ Type]. ∀[E:x:X ⟶ A[x] ⟶ A[x] ⟶ ℙ]. ∀[f,g:x:X ⟶ A[x]].  (dep-fun-equiv(X;x,f,g.E[x;f;g];f;g) ∈ ℙ)
Proof
Definitions occuring in Statement : 
dep-fun-equiv: dep-fun-equiv(X;x,a,b.E[x; a; b];f;g)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2;s3]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
prop: ℙ
, 
so_apply: x[s]
, 
so_apply: x[s1;s2;s3]
, 
so_lambda: λ2x.t[x]
, 
dep-fun-equiv: dep-fun-equiv(X;x,a,b.E[x; a; b];f;g)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
all_wf
Rules used in proof : 
universeEquality, 
because_Cache, 
isect_memberEquality, 
functionEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
hypothesis, 
functionExtensionality, 
applyEquality, 
lambdaEquality, 
hypothesisEquality, 
cumulativity, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[X:Type].  \mforall{}[A:X  {}\mrightarrow{}  Type].  \mforall{}[E:x:X  {}\mrightarrow{}  A[x]  {}\mrightarrow{}  A[x]  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[f,g:x:X  {}\mrightarrow{}  A[x]].
    (dep-fun-equiv(X;x,f,g.E[x;f;g];f;g)  \mmember{}  \mBbbP{})
Date html generated:
2017_09_29-PM-05_48_14
Last ObjectModification:
2017_09_07-PM-03_21_44
Theory : quot_1
Home
Index