Step
*
1
1
of Lemma
cantor-to-general-cantor
1. B : ℕ ⟶ ℕ+
2. C : ℕ ⟶ ℕ+
3. ∀n:ℕ. ((B n) ≤ 2^(C n))
4. g : ℕ ⟶ ℕ
5. ((g 0) = 0 ∈ ℤ) ∧ (∀i:ℕ. ((g (i + 1)) = ((g i) + (C i)) ∈ ℤ))
6. ∀n,m:ℕ. (n < m
⇒ g n < g m)
7. ∀k:ℕ. ∃n:ℕ. (k ∈ {g n..g (n + 1)-})
8. h : k:ℕ ⟶ ℕ
9. ∀k:ℕ. (k ∈ {g (h k)..g ((h k) + 1)-})
⊢ ∃f:(ℕ ⟶ 𝔹) ⟶ n:ℕ ⟶ ℕB[n]
(Surj(ℕ ⟶ 𝔹;n:ℕ ⟶ ℕB[n];f)
∧ (∀k:ℕ. ∃j:ℕ. ∀p,q:ℕ ⟶ 𝔹. ((p = q ∈ (ℕj ⟶ 𝔹))
⇒ ((f p) = (f q) ∈ (n:ℕk ⟶ ℕB[n])))))
BY
{ ((Assert ∀n:ℕ. ∃f:({g n..g (n + 1)-} ⟶ 𝔹) ⟶ ℕB n. Surj({g n..g (n + 1)-} ⟶ 𝔹;ℕB n;f) BY
(Auto
THEN (Assert {g n..g (n + 1)-} ⟶ 𝔹 ~ ℕ2^(C n) BY
((InstLemma `equipollent-exp` [⌜C n⌝;⌜2⌝]⋅ THENA Auto)
THEN (Assert {g n..g (n + 1)-} ⟶ 𝔹 ~ ℕC n ⟶ ℕ2 BY
(BLemma `indep-function_functionality_wrt_equipollent`
THEN Auto
THEN RWO "6" 0
THEN Auto))
THEN RelRST
THEN Auto))
THEN RepeatFor 2 (D -1)
THEN (Assert ∃F:ℕ2^(C n) ⟶ ℕB n. Surj(ℕ2^(C n);ℕB n;F) BY
(D 0 With ⌜λi.if i <z B n then i else 0 fi ⌝
THEN Auto
THEN (D 0 THENA Auto)
THEN Reduce 0
THEN (D 3 With ⌜n⌝ THENA Auto)
THEN D 0 With ⌜b⌝
THEN Auto))
THEN D -1
THEN (D 0 With ⌜F o f⌝ THENW Auto)
THEN RepeatFor 2 (ParallelLast)
THEN D -1
THEN (D -6 With ⌜a⌝ THENA Auto)
THEN ParallelLast
THEN Reduce 0
THEN Auto))
THEN (Skolemize (-1) `F' THENA Auto)
) }
1
1. B : ℕ ⟶ ℕ+
2. C : ℕ ⟶ ℕ+
3. ∀n:ℕ. ((B n) ≤ 2^(C n))
4. g : ℕ ⟶ ℕ
5. ((g 0) = 0 ∈ ℤ) ∧ (∀i:ℕ. ((g (i + 1)) = ((g i) + (C i)) ∈ ℤ))
6. ∀n,m:ℕ. (n < m
⇒ g n < g m)
7. ∀k:ℕ. ∃n:ℕ. (k ∈ {g n..g (n + 1)-})
8. h : k:ℕ ⟶ ℕ
9. ∀k:ℕ. (k ∈ {g (h k)..g ((h k) + 1)-})
10. ∀n:ℕ. ∃f:({g n..g (n + 1)-} ⟶ 𝔹) ⟶ ℕB n. Surj({g n..g (n + 1)-} ⟶ 𝔹;ℕB n;f)
11. F : n:ℕ ⟶ ({g n..g (n + 1)-} ⟶ 𝔹) ⟶ ℕB n
12. ∀n:ℕ. Surj({g n..g (n + 1)-} ⟶ 𝔹;ℕB n;F n)
⊢ ∃f:(ℕ ⟶ 𝔹) ⟶ n:ℕ ⟶ ℕB[n]
(Surj(ℕ ⟶ 𝔹;n:ℕ ⟶ ℕB[n];f)
∧ (∀k:ℕ. ∃j:ℕ. ∀p,q:ℕ ⟶ 𝔹. ((p = q ∈ (ℕj ⟶ 𝔹))
⇒ ((f p) = (f q) ∈ (n:ℕk ⟶ ℕB[n])))))
Latex:
Latex:
1. B : \mBbbN{} {}\mrightarrow{} \mBbbN{}\msupplus{}
2. C : \mBbbN{} {}\mrightarrow{} \mBbbN{}\msupplus{}
3. \mforall{}n:\mBbbN{}. ((B n) \mleq{} 2\^{}(C n))
4. g : \mBbbN{} {}\mrightarrow{} \mBbbN{}
5. ((g 0) = 0) \mwedge{} (\mforall{}i:\mBbbN{}. ((g (i + 1)) = ((g i) + (C i))))
6. \mforall{}n,m:\mBbbN{}. (n < m {}\mRightarrow{} g n < g m)
7. \mforall{}k:\mBbbN{}. \mexists{}n:\mBbbN{}. (k \mmember{} \{g n..g (n + 1)\msupminus{}\})
8. h : k:\mBbbN{} {}\mrightarrow{} \mBbbN{}
9. \mforall{}k:\mBbbN{}. (k \mmember{} \{g (h k)..g ((h k) + 1)\msupminus{}\})
\mvdash{} \mexists{}f:(\mBbbN{} {}\mrightarrow{} \mBbbB{}) {}\mrightarrow{} n:\mBbbN{} {}\mrightarrow{} \mBbbN{}B[n]
(Surj(\mBbbN{} {}\mrightarrow{} \mBbbB{};n:\mBbbN{} {}\mrightarrow{} \mBbbN{}B[n];f) \mwedge{} (\mforall{}k:\mBbbN{}. \mexists{}j:\mBbbN{}. \mforall{}p,q:\mBbbN{} {}\mrightarrow{} \mBbbB{}. ((p = q) {}\mRightarrow{} ((f p) = (f q)))))
By
Latex:
((Assert \mforall{}n:\mBbbN{}. \mexists{}f:(\{g n..g (n + 1)\msupminus{}\} {}\mrightarrow{} \mBbbB{}) {}\mrightarrow{} \mBbbN{}B n. Surj(\{g n..g (n + 1)\msupminus{}\} {}\mrightarrow{} \mBbbB{};\mBbbN{}B n;f) BY
(Auto
THEN (Assert \{g n..g (n + 1)\msupminus{}\} {}\mrightarrow{} \mBbbB{} \msim{} \mBbbN{}2\^{}(C n) BY
((InstLemma `equipollent-exp` [\mkleeneopen{}C n\mkleeneclose{};\mkleeneopen{}2\mkleeneclose{}]\mcdot{} THENA Auto)
THEN (Assert \{g n..g (n + 1)\msupminus{}\} {}\mrightarrow{} \mBbbB{} \msim{} \mBbbN{}C n {}\mrightarrow{} \mBbbN{}2 BY
(BLemma `indep-function\_functionality\_wrt\_equipollent`
THEN Auto
THEN RWO "6" 0
THEN Auto))
THEN RelRST
THEN Auto))
THEN RepeatFor 2 (D -1)
THEN (Assert \mexists{}F:\mBbbN{}2\^{}(C n) {}\mrightarrow{} \mBbbN{}B n. Surj(\mBbbN{}2\^{}(C n);\mBbbN{}B n;F) BY
(D 0 With \mkleeneopen{}\mlambda{}i.if i <z B n then i else 0 fi \mkleeneclose{}
THEN Auto
THEN (D 0 THENA Auto)
THEN Reduce 0
THEN (D 3 With \mkleeneopen{}n\mkleeneclose{} THENA Auto)
THEN D 0 With \mkleeneopen{}b\mkleeneclose{}
THEN Auto))
THEN D -1
THEN (D 0 With \mkleeneopen{}F o f\mkleeneclose{} THENW Auto)
THEN RepeatFor 2 (ParallelLast)
THEN D -1
THEN (D -6 With \mkleeneopen{}a\mkleeneclose{} THENA Auto)
THEN ParallelLast
THEN Reduce 0
THEN Auto))
THEN (Skolemize (-1) `F' THENA Auto)
)
Home
Index