Step
*
1
1
1
of Lemma
cantor-to-general-cantor
1. B : ℕ ⟶ ℕ+
2. C : ℕ ⟶ ℕ+
3. ∀n:ℕ. ((B n) ≤ 2^(C n))
4. g : ℕ ⟶ ℕ
5. ((g 0) = 0 ∈ ℤ) ∧ (∀i:ℕ. ((g (i + 1)) = ((g i) + (C i)) ∈ ℤ))
6. ∀n,m:ℕ. (n < m
⇒ g n < g m)
7. ∀k:ℕ. ∃n:ℕ. (k ∈ {g n..g (n + 1)-})
8. h : k:ℕ ⟶ ℕ
9. ∀k:ℕ. (k ∈ {g (h k)..g ((h k) + 1)-})
10. ∀n:ℕ. ∃f:({g n..g (n + 1)-} ⟶ 𝔹) ⟶ ℕB n. Surj({g n..g (n + 1)-} ⟶ 𝔹;ℕB n;f)
11. F : n:ℕ ⟶ ({g n..g (n + 1)-} ⟶ 𝔹) ⟶ ℕB n
12. ∀n:ℕ. Surj({g n..g (n + 1)-} ⟶ 𝔹;ℕB n;F n)
⊢ ∃f:(ℕ ⟶ 𝔹) ⟶ n:ℕ ⟶ ℕB[n]
(Surj(ℕ ⟶ 𝔹;n:ℕ ⟶ ℕB[n];f)
∧ (∀k:ℕ. ∃j:ℕ. ∀p,q:ℕ ⟶ 𝔹. ((p = q ∈ (ℕj ⟶ 𝔹))
⇒ ((f p) = (f q) ∈ (n:ℕk ⟶ ℕB[n])))))
BY
{ (((D 0 With ⌜λp,n. (F n p)⌝ THEN Reduce 0) THENW (RepUR ``so_apply`` 0 THEN Auto)) THEN D 0) }
1
1. B : ℕ ⟶ ℕ+
2. C : ℕ ⟶ ℕ+
3. ∀n:ℕ. ((B n) ≤ 2^(C n))
4. g : ℕ ⟶ ℕ
5. ((g 0) = 0 ∈ ℤ) ∧ (∀i:ℕ. ((g (i + 1)) = ((g i) + (C i)) ∈ ℤ))
6. ∀n,m:ℕ. (n < m
⇒ g n < g m)
7. ∀k:ℕ. ∃n:ℕ. (k ∈ {g n..g (n + 1)-})
8. h : k:ℕ ⟶ ℕ
9. ∀k:ℕ. (k ∈ {g (h k)..g ((h k) + 1)-})
10. ∀n:ℕ. ∃f:({g n..g (n + 1)-} ⟶ 𝔹) ⟶ ℕB n. Surj({g n..g (n + 1)-} ⟶ 𝔹;ℕB n;f)
11. F : n:ℕ ⟶ ({g n..g (n + 1)-} ⟶ 𝔹) ⟶ ℕB n
12. ∀n:ℕ. Surj({g n..g (n + 1)-} ⟶ 𝔹;ℕB n;F n)
⊢ Surj(ℕ ⟶ 𝔹;n:ℕ ⟶ ℕB[n];λp,n. (F n p))
2
1. B : ℕ ⟶ ℕ+
2. C : ℕ ⟶ ℕ+
3. ∀n:ℕ. ((B n) ≤ 2^(C n))
4. g : ℕ ⟶ ℕ
5. ((g 0) = 0 ∈ ℤ) ∧ (∀i:ℕ. ((g (i + 1)) = ((g i) + (C i)) ∈ ℤ))
6. ∀n,m:ℕ. (n < m
⇒ g n < g m)
7. ∀k:ℕ. ∃n:ℕ. (k ∈ {g n..g (n + 1)-})
8. h : k:ℕ ⟶ ℕ
9. ∀k:ℕ. (k ∈ {g (h k)..g ((h k) + 1)-})
10. ∀n:ℕ. ∃f:({g n..g (n + 1)-} ⟶ 𝔹) ⟶ ℕB n. Surj({g n..g (n + 1)-} ⟶ 𝔹;ℕB n;f)
11. F : n:ℕ ⟶ ({g n..g (n + 1)-} ⟶ 𝔹) ⟶ ℕB n
12. ∀n:ℕ. Surj({g n..g (n + 1)-} ⟶ 𝔹;ℕB n;F n)
⊢ ∀k:ℕ. ∃j:ℕ. ∀p,q:ℕ ⟶ 𝔹. ((p = q ∈ (ℕj ⟶ 𝔹))
⇒ ((λn.(F n p)) = (λn.(F n q)) ∈ (n:ℕk ⟶ ℕB[n])))
Latex:
Latex:
1. B : \mBbbN{} {}\mrightarrow{} \mBbbN{}\msupplus{}
2. C : \mBbbN{} {}\mrightarrow{} \mBbbN{}\msupplus{}
3. \mforall{}n:\mBbbN{}. ((B n) \mleq{} 2\^{}(C n))
4. g : \mBbbN{} {}\mrightarrow{} \mBbbN{}
5. ((g 0) = 0) \mwedge{} (\mforall{}i:\mBbbN{}. ((g (i + 1)) = ((g i) + (C i))))
6. \mforall{}n,m:\mBbbN{}. (n < m {}\mRightarrow{} g n < g m)
7. \mforall{}k:\mBbbN{}. \mexists{}n:\mBbbN{}. (k \mmember{} \{g n..g (n + 1)\msupminus{}\})
8. h : k:\mBbbN{} {}\mrightarrow{} \mBbbN{}
9. \mforall{}k:\mBbbN{}. (k \mmember{} \{g (h k)..g ((h k) + 1)\msupminus{}\})
10. \mforall{}n:\mBbbN{}. \mexists{}f:(\{g n..g (n + 1)\msupminus{}\} {}\mrightarrow{} \mBbbB{}) {}\mrightarrow{} \mBbbN{}B n. Surj(\{g n..g (n + 1)\msupminus{}\} {}\mrightarrow{} \mBbbB{};\mBbbN{}B n;f)
11. F : n:\mBbbN{} {}\mrightarrow{} (\{g n..g (n + 1)\msupminus{}\} {}\mrightarrow{} \mBbbB{}) {}\mrightarrow{} \mBbbN{}B n
12. \mforall{}n:\mBbbN{}. Surj(\{g n..g (n + 1)\msupminus{}\} {}\mrightarrow{} \mBbbB{};\mBbbN{}B n;F n)
\mvdash{} \mexists{}f:(\mBbbN{} {}\mrightarrow{} \mBbbB{}) {}\mrightarrow{} n:\mBbbN{} {}\mrightarrow{} \mBbbN{}B[n]
(Surj(\mBbbN{} {}\mrightarrow{} \mBbbB{};n:\mBbbN{} {}\mrightarrow{} \mBbbN{}B[n];f) \mwedge{} (\mforall{}k:\mBbbN{}. \mexists{}j:\mBbbN{}. \mforall{}p,q:\mBbbN{} {}\mrightarrow{} \mBbbB{}. ((p = q) {}\mRightarrow{} ((f p) = (f q)))))
By
Latex:
(((D 0 With \mkleeneopen{}\mlambda{}p,n. (F n p)\mkleeneclose{} THEN Reduce 0) THENW (RepUR ``so\_apply`` 0 THEN Auto)) THEN D 0)
Home
Index