Step
*
1
of Lemma
ccc-nset-iff-finite
.....aux.....
1. K : Type
2. K ⊆r ℕ
3. K
4. CCC(K)
5. CCCNSet(K)
6. finite(K)
⊢ ∃B:K. ∀k:K. (k ≤ B)
BY
{ ((RWO "finite-iff-listable" (-1) THENA Auto)
THEN ExRepD
THEN RenameVar `k0' 3
THEN (Assert (k0 ∈ L) BY
Auto)
THEN (Assert 0 < ||L|| BY
Auto)
THEN (InstLemma `imax-list-member` [⌜L⌝]⋅ THENA Auto)
THEN (InstLemma `imax-list-ub` [⌜L⌝]⋅ THENA Auto)) }
1
1. K : Type
2. K ⊆r ℕ
3. k0 : K
4. CCC(K)
5. CCCNSet(K)
6. L : K List
7. no_repeats(K;L)
8. ∀x:K. (x ∈ L)
9. (k0 ∈ L)
10. 0 < ||L||
11. (imax-list(L) ∈ L)
12. ∀a:ℤ. a ≤ imax-list(L)
⇐⇒ (∃b∈L. a ≤ b) supposing 0 < ||L||
⊢ ∃B:K. ∀k:K. (k ≤ B)
Latex:
Latex:
.....aux.....
1. K : Type
2. K \msubseteq{}r \mBbbN{}
3. K
4. CCC(K)
5. CCCNSet(K)
6. finite(K)
\mvdash{} \mexists{}B:K. \mforall{}k:K. (k \mleq{} B)
By
Latex:
((RWO "finite-iff-listable" (-1) THENA Auto)
THEN ExRepD
THEN RenameVar `k0' 3
THEN (Assert (k0 \mmember{} L) BY
Auto)
THEN (Assert 0 < ||L|| BY
Auto)
THEN (InstLemma `imax-list-member` [\mkleeneopen{}L\mkleeneclose{}]\mcdot{} THENA Auto)
THEN (InstLemma `imax-list-ub` [\mkleeneopen{}L\mkleeneclose{}]\mcdot{} THENA Auto))
Home
Index