Nuprl Lemma : ccc-nset-iff-finite

K:Type. ((K ⊆r ℕ  (CCC(K) ⇐⇒ finite(K)))


Proof




Definitions occuring in Statement :  contra-cc: CCC(T) finite: finite(T) nat: subtype_rel: A ⊆B all: x:A. B[x] iff: ⇐⇒ Q implies:  Q universe: Type
Definitions unfolded in proof :  so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] squash: T less_than: a < b lelt: i ≤ j < k int_seg: {i..j-} l_exists: (∃x∈L. P[x]) satisfiable_int_formula: satisfiable_int_formula(fmla) ge: i ≥  sq_type: SQType(T) l_member: (x ∈ l) true: True less_than': less_than'(a;b) subtract: m uiff: uiff(P;Q) decidable: Dec(P) le: A ≤ B top: Top cons: [a b] or: P ∨ Q rev_implies:  Q uimplies: supposing a nat: guard: {T} subtype_rel: A ⊆B exists: x:A. B[x] prop: uall: [x:A]. B[x] false: False not: ¬A member: t ∈ T cand: c∧ B ccc-nset: CCCNSet(K) and: P ∧ Q iff: ⇐⇒ Q implies:  Q all: x:A. B[x]
Lemmas referenced :  CCC-Sigma02-dns int_formula_prop_less_lemma intformless_wf int_seg_properties le_wf length_wf istype-less_than int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma istype-int itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf full-omega-unsat decidable__le nat_properties select_wf int_subtype_base subtype_base_sq imax-list-ub subtype_rel_list imax-list-member le-add-cancel add-zero add-associates add_functionality_wrt_le add-commutes minus-one-mul-top zero-add minus-one-mul minus-add condition-implies-le not-lt-2 istype-false decidable__lt length_wf_nat length_of_cons_lemma product_subtype_list nil_member length_of_nil_lemma list-cases finite-iff-listable istype-universe subtype_rel_wf CCC-finite contra-cc_wf bounded-ccc-nset-finite istype-void nat_wf subtype_rel_transitivity istype-nat istype-le finite_wf ccc-nset-not-not-finite
Rules used in proof :  imageElimination applyLambdaEquality hyp_replacement Error :dependent_set_memberEquality_alt,  int_eqEquality approximateComputation cumulativity Error :dependent_pairFormation_alt,  equalitySymmetry equalityTransitivity Error :equalityIstype,  minusEquality addEquality natural_numberEquality Error :isect_memberEquality_alt,  hypothesis_subsumption promote_hyp unionElimination universeEquality instantiate productElimination independent_isectElimination intEquality rename setElimination Error :lambdaEquality_alt,  applyEquality because_Cache Error :inhabitedIsType,  Error :productIsType,  Error :functionIsType,  sqequalRule isectElimination Error :universeIsType,  voidElimination independent_functionElimination hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction hypothesis cut independent_pairFormation Error :lambdaFormation_alt,  sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}K:Type.  ((K  \msubseteq{}r  \mBbbN{})  {}\mRightarrow{}  K  {}\mRightarrow{}  (CCC(K)  \mLeftarrow{}{}\mRightarrow{}  finite(K)))



Date html generated: 2019_06_20-PM-03_03_04
Last ObjectModification: 2019_06_14-AM-10_08_41

Theory : continuity


Home Index