Nuprl Lemma : ccc-nset-iff-finite
∀K:Type. ((K ⊆r ℕ)
⇒ K
⇒ (CCC(K)
⇐⇒ finite(K)))
Proof
Definitions occuring in Statement :
contra-cc: CCC(T)
,
finite: finite(T)
,
nat: ℕ
,
subtype_rel: A ⊆r B
,
all: ∀x:A. B[x]
,
iff: P
⇐⇒ Q
,
implies: P
⇒ Q
,
universe: Type
Definitions unfolded in proof :
so_apply: x[s1;s2]
,
so_lambda: λ2x y.t[x; y]
,
squash: ↓T
,
less_than: a < b
,
lelt: i ≤ j < k
,
int_seg: {i..j-}
,
l_exists: (∃x∈L. P[x])
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
ge: i ≥ j
,
sq_type: SQType(T)
,
l_member: (x ∈ l)
,
true: True
,
less_than': less_than'(a;b)
,
subtract: n - m
,
uiff: uiff(P;Q)
,
decidable: Dec(P)
,
le: A ≤ B
,
top: Top
,
cons: [a / b]
,
or: P ∨ Q
,
rev_implies: P
⇐ Q
,
uimplies: b supposing a
,
nat: ℕ
,
guard: {T}
,
subtype_rel: A ⊆r B
,
exists: ∃x:A. B[x]
,
prop: ℙ
,
uall: ∀[x:A]. B[x]
,
false: False
,
not: ¬A
,
member: t ∈ T
,
cand: A c∧ B
,
ccc-nset: CCCNSet(K)
,
and: P ∧ Q
,
iff: P
⇐⇒ Q
,
implies: P
⇒ Q
,
all: ∀x:A. B[x]
Lemmas referenced :
CCC-Sigma02-dns,
int_formula_prop_less_lemma,
intformless_wf,
int_seg_properties,
le_wf,
length_wf,
istype-less_than,
int_formula_prop_wf,
int_term_value_var_lemma,
int_term_value_constant_lemma,
int_formula_prop_le_lemma,
int_formula_prop_not_lemma,
int_formula_prop_and_lemma,
istype-int,
itermVar_wf,
itermConstant_wf,
intformle_wf,
intformnot_wf,
intformand_wf,
full-omega-unsat,
decidable__le,
nat_properties,
select_wf,
int_subtype_base,
subtype_base_sq,
imax-list-ub,
subtype_rel_list,
imax-list-member,
le-add-cancel,
add-zero,
add-associates,
add_functionality_wrt_le,
add-commutes,
minus-one-mul-top,
zero-add,
minus-one-mul,
minus-add,
condition-implies-le,
not-lt-2,
istype-false,
decidable__lt,
length_wf_nat,
length_of_cons_lemma,
product_subtype_list,
nil_member,
length_of_nil_lemma,
list-cases,
finite-iff-listable,
istype-universe,
subtype_rel_wf,
CCC-finite,
contra-cc_wf,
bounded-ccc-nset-finite,
istype-void,
nat_wf,
subtype_rel_transitivity,
istype-nat,
istype-le,
finite_wf,
ccc-nset-not-not-finite
Rules used in proof :
imageElimination,
applyLambdaEquality,
hyp_replacement,
Error :dependent_set_memberEquality_alt,
int_eqEquality,
approximateComputation,
cumulativity,
Error :dependent_pairFormation_alt,
equalitySymmetry,
equalityTransitivity,
Error :equalityIstype,
minusEquality,
addEquality,
natural_numberEquality,
Error :isect_memberEquality_alt,
hypothesis_subsumption,
promote_hyp,
unionElimination,
universeEquality,
instantiate,
productElimination,
independent_isectElimination,
intEquality,
rename,
setElimination,
Error :lambdaEquality_alt,
applyEquality,
because_Cache,
Error :inhabitedIsType,
Error :productIsType,
Error :functionIsType,
sqequalRule,
isectElimination,
Error :universeIsType,
voidElimination,
independent_functionElimination,
hypothesisEquality,
thin,
dependent_functionElimination,
sqequalHypSubstitution,
extract_by_obid,
introduction,
hypothesis,
cut,
independent_pairFormation,
Error :lambdaFormation_alt,
sqequalReflexivity,
computationStep,
sqequalTransitivity,
sqequalSubstitution
Latex:
\mforall{}K:Type. ((K \msubseteq{}r \mBbbN{}) {}\mRightarrow{} K {}\mRightarrow{} (CCC(K) \mLeftarrow{}{}\mRightarrow{} finite(K)))
Date html generated:
2019_06_20-PM-03_03_04
Last ObjectModification:
2019_06_14-AM-10_08_41
Theory : continuity
Home
Index