Nuprl Lemma : ccc-nset-iff-finite
∀K:Type. ((K ⊆r ℕ) 
⇒ K 
⇒ (CCC(K) 
⇐⇒ finite(K)))
Proof
Definitions occuring in Statement : 
contra-cc: CCC(T)
, 
finite: finite(T)
, 
nat: ℕ
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
universe: Type
Definitions unfolded in proof : 
so_apply: x[s1;s2]
, 
so_lambda: λ2x y.t[x; y]
, 
squash: ↓T
, 
less_than: a < b
, 
lelt: i ≤ j < k
, 
int_seg: {i..j-}
, 
l_exists: (∃x∈L. P[x])
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
ge: i ≥ j 
, 
sq_type: SQType(T)
, 
l_member: (x ∈ l)
, 
true: True
, 
less_than': less_than'(a;b)
, 
subtract: n - m
, 
uiff: uiff(P;Q)
, 
decidable: Dec(P)
, 
le: A ≤ B
, 
top: Top
, 
cons: [a / b]
, 
or: P ∨ Q
, 
rev_implies: P 
⇐ Q
, 
uimplies: b supposing a
, 
nat: ℕ
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
false: False
, 
not: ¬A
, 
member: t ∈ T
, 
cand: A c∧ B
, 
ccc-nset: CCCNSet(K)
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
Lemmas referenced : 
CCC-Sigma02-dns, 
int_formula_prop_less_lemma, 
intformless_wf, 
int_seg_properties, 
le_wf, 
length_wf, 
istype-less_than, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
istype-int, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__le, 
nat_properties, 
select_wf, 
int_subtype_base, 
subtype_base_sq, 
imax-list-ub, 
subtype_rel_list, 
imax-list-member, 
le-add-cancel, 
add-zero, 
add-associates, 
add_functionality_wrt_le, 
add-commutes, 
minus-one-mul-top, 
zero-add, 
minus-one-mul, 
minus-add, 
condition-implies-le, 
not-lt-2, 
istype-false, 
decidable__lt, 
length_wf_nat, 
length_of_cons_lemma, 
product_subtype_list, 
nil_member, 
length_of_nil_lemma, 
list-cases, 
finite-iff-listable, 
istype-universe, 
subtype_rel_wf, 
CCC-finite, 
contra-cc_wf, 
bounded-ccc-nset-finite, 
istype-void, 
nat_wf, 
subtype_rel_transitivity, 
istype-nat, 
istype-le, 
finite_wf, 
ccc-nset-not-not-finite
Rules used in proof : 
imageElimination, 
applyLambdaEquality, 
hyp_replacement, 
Error :dependent_set_memberEquality_alt, 
int_eqEquality, 
approximateComputation, 
cumulativity, 
Error :dependent_pairFormation_alt, 
equalitySymmetry, 
equalityTransitivity, 
Error :equalityIstype, 
minusEquality, 
addEquality, 
natural_numberEquality, 
Error :isect_memberEquality_alt, 
hypothesis_subsumption, 
promote_hyp, 
unionElimination, 
universeEquality, 
instantiate, 
productElimination, 
independent_isectElimination, 
intEquality, 
rename, 
setElimination, 
Error :lambdaEquality_alt, 
applyEquality, 
because_Cache, 
Error :inhabitedIsType, 
Error :productIsType, 
Error :functionIsType, 
sqequalRule, 
isectElimination, 
Error :universeIsType, 
voidElimination, 
independent_functionElimination, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
hypothesis, 
cut, 
independent_pairFormation, 
Error :lambdaFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}K:Type.  ((K  \msubseteq{}r  \mBbbN{})  {}\mRightarrow{}  K  {}\mRightarrow{}  (CCC(K)  \mLeftarrow{}{}\mRightarrow{}  finite(K)))
Date html generated:
2019_06_20-PM-03_03_04
Last ObjectModification:
2019_06_14-AM-10_08_41
Theory : continuity
Home
Index