Nuprl Lemma : contra-cc_wf

[T:Type]. (CCC(T) ∈ ℙ')


Proof




Definitions occuring in Statement :  contra-cc: CCC(T) uall: [x:A]. B[x] prop: member: t ∈ T universe: Type
Definitions unfolded in proof :  subtype_rel: A ⊆B exists: x:A. B[x] implies:  Q all: x:A. B[x] prop: contra-cc: CCC(T) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  istype-universe subtype_rel_self nat_wf
Rules used in proof :  equalitySymmetry equalityTransitivity axiomEquality because_Cache isectElimination sqequalHypSubstitution instantiate thin applyEquality productEquality universeEquality hypothesisEquality hypothesis extract_by_obid cumulativity functionEquality sqequalRule cut introduction Error :isect_memberFormation_alt,  sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[T:Type].  (CCC(T)  \mmember{}  \mBbbP{}')



Date html generated: 2019_06_20-PM-03_00_22
Last ObjectModification: 2019_06_12-PM-07_59_44

Theory : continuity


Home Index