Nuprl Lemma : CCC-Sigma02-dns

K:Type. (CCCNSet(K)  (∀P:K ⟶ K ⟶ ℙ((∀k,m:K.  Dec(P[k;m]))  (¬¬(∃k:K. ∀m:K. P[k;m]))  (∃k:K. ∀m:K. P[k;m]))))


Proof




Definitions occuring in Statement :  ccc-nset: CCCNSet(K) decidable: Dec(P) prop: so_apply: x[s1;s2] all: x:A. B[x] exists: x:A. B[x] not: ¬A implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] prop: subtype_rel: A ⊆B so_apply: x[s1;s2] exists: x:A. B[x] false: False not: ¬A or: P ∨ Q implies:  Q member: t ∈ T all: x:A. B[x]
Lemmas referenced :  istype-universe ccc-nset_wf decidable_wf subtype_rel_self istype-void CCC-omni-2
Rules used in proof :  productElimination universeEquality isectElimination instantiate applyEquality Error :universeIsType,  Error :productIsType,  because_Cache voidElimination Error :inhabitedIsType,  Error :functionIsType,  sqequalRule unionElimination independent_functionElimination hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution hypothesis Error :lambdaFormation_alt,  sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution extract_by_obid introduction cut

Latex:
\mforall{}K:Type
    (CCCNSet(K)
    {}\mRightarrow{}  (\mforall{}P:K  {}\mrightarrow{}  K  {}\mrightarrow{}  \mBbbP{}.  ((\mforall{}k,m:K.    Dec(P[k;m]))  {}\mRightarrow{}  (\mneg{}\mneg{}(\mexists{}k:K.  \mforall{}m:K.  P[k;m]))  {}\mRightarrow{}  (\mexists{}k:K.  \mforall{}m:K.  P[k;m]))))



Date html generated: 2019_06_20-PM-03_02_59
Last ObjectModification: 2019_06_14-AM-10_04_54

Theory : continuity


Home Index