Nuprl Lemma : CCC-omni-2

K:Type
  (CCCNSet(K)  (∀P:K ⟶ K ⟶ ℙ((∀k,m:K.  Dec(P[k;m]))  ((∃k:K. ∀m:K. P[k;m]) ∨ (∀k:K. (∀m:K. P[k;m])))))))


Proof




Definitions occuring in Statement :  ccc-nset: CCCNSet(K) decidable: Dec(P) prop: so_apply: x[s1;s2] all: x:A. B[x] exists: x:A. B[x] not: ¬A implies:  Q or: P ∨ Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  false: False guard: {T} subtype_rel: A ⊆B not: ¬A decidable: Dec(P) exists: x:A. B[x] or: P ∨ Q uall: [x:A]. B[x] so_apply: x[s] so_apply: x[s1;s2] prop: so_lambda: λ2x.t[x] implies:  Q member: t ∈ T all: x:A. B[x]
Lemmas referenced :  istype-void subtype_rel_self decidable__not not_wf istype-universe ccc-nset_wf decidable_wf CCC-omni
Rules used in proof :  Error :inlFormation_alt,  voidElimination Error :inrFormation_alt,  productElimination unionElimination Error :inhabitedIsType,  instantiate universeEquality isectElimination Error :functionIsType,  because_Cache Error :universeIsType,  applyEquality functionEquality Error :lambdaEquality_alt,  sqequalRule independent_functionElimination hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution hypothesis Error :lambdaFormation_alt,  sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution extract_by_obid introduction cut

Latex:
\mforall{}K:Type
    (CCCNSet(K)
    {}\mRightarrow{}  (\mforall{}P:K  {}\mrightarrow{}  K  {}\mrightarrow{}  \mBbbP{}
                ((\mforall{}k,m:K.    Dec(P[k;m]))  {}\mRightarrow{}  ((\mexists{}k:K.  \mforall{}m:K.  P[k;m])  \mvee{}  (\mforall{}k:K.  (\mneg{}(\mforall{}m:K.  P[k;m])))))))



Date html generated: 2019_06_20-PM-03_02_54
Last ObjectModification: 2019_06_14-AM-10_00_38

Theory : continuity


Home Index