Nuprl Lemma : CCC-omni

K:Type. (CCCNSet(K)  (∀P:K ⟶ ℙ((∀k:K. Dec(P[k]))  ((∃k:K. P[k]) ∨ (∀k:K. P[k]))))))


Proof




Definitions occuring in Statement :  ccc-nset: CCCNSet(K) decidable: Dec(P) prop: so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] not: ¬A implies:  Q or: P ∨ Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  ge: i ≥  contra-cc: CCC(T) cand: c∧ B so_apply: x[s] so_lambda: λ2x.t[x] sq_type: SQType(T) prop: top: Top false: False satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A squash: T less_than: a < b le: A ≤ B lelt: i ≤ j < k or: P ∨ Q int_seg: {i..j-} uimplies: supposing a uall: [x:A]. B[x] nat: guard: {T} subtype_rel: A ⊆B decidable: Dec(P) weakly-decidable-nset: WD(K) exists: x:A. B[x] and: P ∧ Q ccc-nset: CCCNSet(K) member: t ∈ T implies:  Q all: x:A. B[x]
Lemmas referenced :  nat_properties le_wf decidable__not decidable__implies not_wf decidable__all_int_seg zero-le-nat subtype_rel_self int_formula_prop_le_lemma intformle_wf decidable__and2 equal-wf-base decidable__exists_int_seg istype-universe ccc-nset_wf decidable_wf int_seg_wf lelt_wf set_subtype_base int_subtype_base subtype_base_sq int_formula_prop_wf int_term_value_constant_lemma int_term_value_add_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_not_lemma istype-void int_formula_prop_and_lemma istype-int itermConstant_wf itermAdd_wf intformless_wf itermVar_wf intformeq_wf intformnot_wf intformand_wf full-omega-unsat decidable__equal_int int_seg_properties istype-less_than istype-le decidable__lt nat_wf subtype_rel_transitivity istype-nat decidable__le ccc-nset-minimum ccc-nset-weakly-decidable
Rules used in proof :  Error :unionIsType,  unionEquality functionEquality baseClosed closedConclusion baseApply productEquality equalityTransitivity universeEquality addEquality equalitySymmetry sqequalBase Error :inrFormation_alt,  Error :inhabitedIsType,  Error :equalityIstype,  Error :functionIsType,  Error :inlFormation_alt,  cumulativity instantiate Error :universeIsType,  voidElimination Error :isect_memberEquality_alt,  int_eqEquality Error :dependent_pairFormation_alt,  approximateComputation natural_numberEquality imageElimination Error :productIsType,  independent_pairFormation Error :dependent_set_memberEquality_alt,  unionElimination independent_isectElimination intEquality isectElimination rename setElimination Error :lambdaEquality_alt,  applyEquality sqequalRule productElimination because_Cache hypothesis independent_functionElimination hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut Error :lambdaFormation_alt,  sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}K:Type.  (CCCNSet(K)  {}\mRightarrow{}  (\mforall{}P:K  {}\mrightarrow{}  \mBbbP{}.  ((\mforall{}k:K.  Dec(P[k]))  {}\mRightarrow{}  ((\mexists{}k:K.  P[k])  \mvee{}  (\mforall{}k:K.  (\mneg{}P[k]))))))



Date html generated: 2019_06_20-PM-03_02_50
Last ObjectModification: 2019_06_14-AM-09_51_32

Theory : continuity


Home Index