Nuprl Lemma : CCC-omni
∀K:Type. (CCCNSet(K) 
⇒ (∀P:K ⟶ ℙ. ((∀k:K. Dec(P[k])) 
⇒ ((∃k:K. P[k]) ∨ (∀k:K. (¬P[k]))))))
Proof
Definitions occuring in Statement : 
ccc-nset: CCCNSet(K)
, 
decidable: Dec(P)
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
ge: i ≥ j 
, 
contra-cc: CCC(T)
, 
cand: A c∧ B
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
sq_type: SQType(T)
, 
prop: ℙ
, 
top: Top
, 
false: False
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
not: ¬A
, 
squash: ↓T
, 
less_than: a < b
, 
le: A ≤ B
, 
lelt: i ≤ j < k
, 
or: P ∨ Q
, 
int_seg: {i..j-}
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
nat: ℕ
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
decidable: Dec(P)
, 
weakly-decidable-nset: WD(K)
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
ccc-nset: CCCNSet(K)
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
Lemmas referenced : 
nat_properties, 
le_wf, 
decidable__not, 
decidable__implies, 
not_wf, 
decidable__all_int_seg, 
zero-le-nat, 
subtype_rel_self, 
int_formula_prop_le_lemma, 
intformle_wf, 
decidable__and2, 
equal-wf-base, 
decidable__exists_int_seg, 
istype-universe, 
ccc-nset_wf, 
decidable_wf, 
int_seg_wf, 
lelt_wf, 
set_subtype_base, 
int_subtype_base, 
subtype_base_sq, 
int_formula_prop_wf, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_and_lemma, 
istype-int, 
itermConstant_wf, 
itermAdd_wf, 
intformless_wf, 
itermVar_wf, 
intformeq_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__equal_int, 
int_seg_properties, 
istype-less_than, 
istype-le, 
decidable__lt, 
nat_wf, 
subtype_rel_transitivity, 
istype-nat, 
decidable__le, 
ccc-nset-minimum, 
ccc-nset-weakly-decidable
Rules used in proof : 
Error :unionIsType, 
unionEquality, 
functionEquality, 
baseClosed, 
closedConclusion, 
baseApply, 
productEquality, 
equalityTransitivity, 
universeEquality, 
addEquality, 
equalitySymmetry, 
sqequalBase, 
Error :inrFormation_alt, 
Error :inhabitedIsType, 
Error :equalityIstype, 
Error :functionIsType, 
Error :inlFormation_alt, 
cumulativity, 
instantiate, 
Error :universeIsType, 
voidElimination, 
Error :isect_memberEquality_alt, 
int_eqEquality, 
Error :dependent_pairFormation_alt, 
approximateComputation, 
natural_numberEquality, 
imageElimination, 
Error :productIsType, 
independent_pairFormation, 
Error :dependent_set_memberEquality_alt, 
unionElimination, 
independent_isectElimination, 
intEquality, 
isectElimination, 
rename, 
setElimination, 
Error :lambdaEquality_alt, 
applyEquality, 
sqequalRule, 
productElimination, 
because_Cache, 
hypothesis, 
independent_functionElimination, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
Error :lambdaFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}K:Type.  (CCCNSet(K)  {}\mRightarrow{}  (\mforall{}P:K  {}\mrightarrow{}  \mBbbP{}.  ((\mforall{}k:K.  Dec(P[k]))  {}\mRightarrow{}  ((\mexists{}k:K.  P[k])  \mvee{}  (\mforall{}k:K.  (\mneg{}P[k]))))))
Date html generated:
2019_06_20-PM-03_02_50
Last ObjectModification:
2019_06_14-AM-09_51_32
Theory : continuity
Home
Index