Nuprl Lemma : bounded-ccc-nset-finite
∀K:Type. (CCCNSet(K) ⇒ (∀B:ℕ. ((∀k:K. (k ≤ B)) ⇒ finite(K))))
Proof
Definitions occuring in Statement : 
ccc-nset: CCCNSet(K), 
finite: finite(T), 
nat: ℕ, 
le: A ≤ B, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
universe: Type
Definitions unfolded in proof : 
prop: ℙ, 
uimplies: b supposing a, 
nat: ℕ, 
guard: {T}, 
subtype_rel: A ⊆r B, 
uall: ∀[x:A]. B[x], 
and: P ∧ Q, 
ccc-nset: CCCNSet(K), 
implies: P ⇒ Q, 
member: t ∈ T, 
all: ∀x:A. B[x]
Lemmas referenced : 
istype-universe, 
ccc-nset_wf, 
istype-nat, 
nat_wf, 
subtype_rel_transitivity, 
istype-le, 
bounded-decidable-nset-finite, 
bounded-ccc-nset-decidable
Rules used in proof : 
universeEquality, 
instantiate, 
independent_isectElimination, 
intEquality, 
Error :inhabitedIsType, 
rename, 
setElimination, 
Error :lambdaEquality_alt, 
applyEquality, 
isectElimination, 
Error :universeIsType, 
Error :functionIsType, 
sqequalRule, 
productElimination, 
independent_functionElimination, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
hypothesis, 
Error :lambdaFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
extract_by_obid, 
introduction, 
cut
Latex:
\mforall{}K:Type.  (CCCNSet(K)  {}\mRightarrow{}  (\mforall{}B:\mBbbN{}.  ((\mforall{}k:K.  (k  \mleq{}  B))  {}\mRightarrow{}  finite(K))))
Date html generated:
2019_06_20-PM-03_02_40
Last ObjectModification:
2019_06_13-PM-04_17_15
Theory : continuity
Home
Index