Nuprl Lemma : bounded-ccc-nset-decidable

K:Type. (CCCNSet(K)  (∀B:ℕ((∀k:K. (k ≤ B))  (∀l:ℕ((l ∈ K) ∨ (l ∈ K)))))))


Proof




Definitions occuring in Statement :  ccc-nset: CCCNSet(K) nat: le: A ≤ B all: x:A. B[x] not: ¬A implies:  Q or: P ∨ Q member: t ∈ T universe: Type
Definitions unfolded in proof :  lelt: i ≤ j < k int_seg: {i..j-} weakly-decidable-nset: WD(K) sq_type: SQType(T) le: A ≤ B top: Top false: False satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A or: P ∨ Q decidable: Dec(P) transparent-nset: Transparent(K) ge: i ≥  rev_uimplies: rev_uimplies(P;Q) so_apply: x[s] so_lambda: λ2x.t[x] exists: x:A. B[x] uimplies: supposing a nat: guard: {T} subtype_rel: A ⊆B and: P ∧ Q ccc-nset: CCCNSet(K) prop: uall: [x:A]. B[x] implies:  Q member: t ∈ T all: x:A. B[x]
Lemmas referenced :  nat_properties set_subtype_base decidable__lt int_subtype_base subtype_base_sq int_formula_prop_eq_lemma intformeq_wf decidable__equal_int int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_subtract_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma istype-void int_formula_prop_and_lemma intformless_wf itermVar_wf itermSubtract_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf full-omega-unsat decidable__le le_weakening le_functionality zero-le-nat le_wf primrec-wf2 istype-less_than istype-int subtract_wf nat_wf subtype_rel_transitivity istype-nat istype-le ccc-nset-transparent istype-universe ccc-nset_wf ccc-nset-minimum ccc-nset-weakly-decidable
Rules used in proof :  Error :inrFormation_alt,  sqequalBase Error :equalityIstype,  Error :inlFormation_alt,  cumulativity independent_pairFormation voidElimination Error :isect_memberEquality_alt,  int_eqEquality approximateComputation unionElimination Error :dependent_set_memberEquality_alt,  equalitySymmetry equalityTransitivity Error :dependent_pairFormation_alt,  productEquality functionEquality Error :setIsType,  Error :productIsType,  because_Cache natural_numberEquality independent_isectElimination intEquality rename setElimination Error :lambdaEquality_alt,  applyEquality Error :inhabitedIsType,  Error :functionIsType,  sqequalRule productElimination universeEquality instantiate isectElimination Error :universeIsType,  independent_functionElimination hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution hypothesis Error :lambdaFormation_alt,  sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution extract_by_obid introduction cut

Latex:
\mforall{}K:Type.  (CCCNSet(K)  {}\mRightarrow{}  (\mforall{}B:\mBbbN{}.  ((\mforall{}k:K.  (k  \mleq{}  B))  {}\mRightarrow{}  (\mforall{}l:\mBbbN{}.  ((l  \mmember{}  K)  \mvee{}  (\mneg{}(l  \mmember{}  K)))))))



Date html generated: 2019_06_20-PM-03_02_32
Last ObjectModification: 2019_06_13-PM-04_14_12

Theory : continuity


Home Index