Nuprl Lemma : CCC-finite

[T:Type]. (finite(T)  CCC(T))


Proof




Definitions occuring in Statement :  contra-cc: CCC(T) finite: finite(T) uall: [x:A]. B[x] implies:  Q universe: Type
Definitions unfolded in proof :  subtract: m primtailrec: primtailrec(n;i;b;f) primrec: primrec(n;b;c) exp: i^n true: True less_than': less_than'(a;b) so_apply: x[s] so_lambda: λ2x.t[x] surject: Surj(A;B;f) iff: ⇐⇒ Q rev_implies:  Q assert: b bnot: ¬bb bfalse: ff squash: T less_than: a < b uiff: uiff(P;Q) ifthenelse: if then else fi  btrue: tt it: unit: Unit bool: 𝔹 biject: Bij(A;B;f) equipollent: B subtype_rel: A ⊆B contra-cc: CCC(T) guard: {T} sq_type: SQType(T) le: A ≤ B and: P ∧ Q lelt: i ≤ j < k int_seg: {i..j-} false: False top: Top satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A or: P ∨ Q decidable: Dec(P) ge: i ≥  int_upper: {i...} uimplies: supposing a nat: all: x:A. B[x] prop: member: t ∈ T exists: x:A. B[x] finite: finite(T) implies:  Q uall: [x:A]. B[x]
Lemmas referenced :  equipollent_inversion istype-false CCC-product int_formula_prop_eq_lemma intformeq_wf subtract-add-cancel iff_weakening_equal exp_add true_wf squash_wf equal_wf exp_wf4 equipollent-multiply exp0_lemma primrec-wf2 int_term_value_subtract_lemma itermSubtract_wf subtract_wf contra-cc_wf lelt_wf le_wf set_subtype_base less_than_wf assert_wf iff_weakening_uiff assert-bnot bool_subtype_base bool_cases_sqequal eqff_to_assert assert_of_lt_int eqtt_to_assert lt_int_wf CCC-bool surject_wf equipollent-two bool_wf CCC-surjection istype-less_than decidable__lt int_seg_cases int_seg_subtype_special subtype_rel_self int_seg_wf int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_and_lemma itermVar_wf intformless_wf intformand_wf int_seg_properties int_subtype_base subtype_base_sq decidable__equal_int istype-le int_formula_prop_wf int_term_value_constant_lemma int_formula_prop_le_lemma istype-void int_formula_prop_not_lemma istype-int itermConstant_wf intformle_wf intformnot_wf full-omega-unsat decidable__le nat_properties exp-greater exp_wf2 le_weakening2 istype-universe finite_wf
Rules used in proof :  imageMemberEquality productEquality Error :setIsType,  sqequalBase baseClosed closedConclusion baseApply promote_hyp Error :equalityIstype,  imageElimination equalityElimination hypothesis_subsumption applyEquality Error :productIsType,  Error :inhabitedIsType,  Error :functionIsType,  independent_pairFormation int_eqEquality equalitySymmetry equalityTransitivity intEquality cumulativity because_Cache sqequalRule voidElimination Error :isect_memberEquality_alt,  Error :lambdaEquality_alt,  independent_functionElimination approximateComputation unionElimination Error :dependent_set_memberEquality_alt,  independent_isectElimination natural_numberEquality rename setElimination dependent_functionElimination Error :dependent_pairFormation_alt,  universeEquality instantiate hypothesis hypothesisEquality isectElimination extract_by_obid introduction Error :universeIsType,  cut thin productElimination sqequalHypSubstitution Error :lambdaFormation_alt,  Error :isect_memberFormation_alt,  sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[T:Type].  (finite(T)  {}\mRightarrow{}  CCC(T))



Date html generated: 2019_06_20-PM-03_01_10
Last ObjectModification: 2019_06_12-PM-09_48_12

Theory : continuity


Home Index