Nuprl Lemma : CCC-finite
∀[T:Type]. (finite(T) 
⇒ CCC(T))
Proof
Definitions occuring in Statement : 
contra-cc: CCC(T)
, 
finite: finite(T)
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
universe: Type
Definitions unfolded in proof : 
subtract: n - m
, 
primtailrec: primtailrec(n;i;b;f)
, 
primrec: primrec(n;b;c)
, 
exp: i^n
, 
true: True
, 
less_than': less_than'(a;b)
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
surject: Surj(A;B;f)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
assert: ↑b
, 
bnot: ¬bb
, 
bfalse: ff
, 
squash: ↓T
, 
less_than: a < b
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
biject: Bij(A;B;f)
, 
equipollent: A ~ B
, 
subtype_rel: A ⊆r B
, 
contra-cc: CCC(T)
, 
guard: {T}
, 
sq_type: SQType(T)
, 
le: A ≤ B
, 
and: P ∧ Q
, 
lelt: i ≤ j < k
, 
int_seg: {i..j-}
, 
false: False
, 
top: Top
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
not: ¬A
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
ge: i ≥ j 
, 
int_upper: {i...}
, 
uimplies: b supposing a
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
exists: ∃x:A. B[x]
, 
finite: finite(T)
, 
implies: P 
⇒ Q
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
equipollent_inversion, 
istype-false, 
CCC-product, 
int_formula_prop_eq_lemma, 
intformeq_wf, 
subtract-add-cancel, 
iff_weakening_equal, 
exp_add, 
true_wf, 
squash_wf, 
equal_wf, 
exp_wf4, 
equipollent-multiply, 
exp0_lemma, 
primrec-wf2, 
int_term_value_subtract_lemma, 
itermSubtract_wf, 
subtract_wf, 
contra-cc_wf, 
lelt_wf, 
le_wf, 
set_subtype_base, 
less_than_wf, 
assert_wf, 
iff_weakening_uiff, 
assert-bnot, 
bool_subtype_base, 
bool_cases_sqequal, 
eqff_to_assert, 
assert_of_lt_int, 
eqtt_to_assert, 
lt_int_wf, 
CCC-bool, 
surject_wf, 
equipollent-two, 
bool_wf, 
CCC-surjection, 
istype-less_than, 
decidable__lt, 
int_seg_cases, 
int_seg_subtype_special, 
subtype_rel_self, 
int_seg_wf, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
intformless_wf, 
intformand_wf, 
int_seg_properties, 
int_subtype_base, 
subtype_base_sq, 
decidable__equal_int, 
istype-le, 
int_formula_prop_wf, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
istype-int, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
full-omega-unsat, 
decidable__le, 
nat_properties, 
exp-greater, 
exp_wf2, 
le_weakening2, 
istype-universe, 
finite_wf
Rules used in proof : 
imageMemberEquality, 
productEquality, 
Error :setIsType, 
sqequalBase, 
baseClosed, 
closedConclusion, 
baseApply, 
promote_hyp, 
Error :equalityIstype, 
imageElimination, 
equalityElimination, 
hypothesis_subsumption, 
applyEquality, 
Error :productIsType, 
Error :inhabitedIsType, 
Error :functionIsType, 
independent_pairFormation, 
int_eqEquality, 
equalitySymmetry, 
equalityTransitivity, 
intEquality, 
cumulativity, 
because_Cache, 
sqequalRule, 
voidElimination, 
Error :isect_memberEquality_alt, 
Error :lambdaEquality_alt, 
independent_functionElimination, 
approximateComputation, 
unionElimination, 
Error :dependent_set_memberEquality_alt, 
independent_isectElimination, 
natural_numberEquality, 
rename, 
setElimination, 
dependent_functionElimination, 
Error :dependent_pairFormation_alt, 
universeEquality, 
instantiate, 
hypothesis, 
hypothesisEquality, 
isectElimination, 
extract_by_obid, 
introduction, 
Error :universeIsType, 
cut, 
thin, 
productElimination, 
sqequalHypSubstitution, 
Error :lambdaFormation_alt, 
Error :isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[T:Type].  (finite(T)  {}\mRightarrow{}  CCC(T))
Date html generated:
2019_06_20-PM-03_01_10
Last ObjectModification:
2019_06_12-PM-09_48_12
Theory : continuity
Home
Index