Nuprl Lemma : CCC-product

A,B:Type.  (CCC(A)  CCC(B)  CCC(A × B))


Proof




Definitions occuring in Statement :  contra-cc: CCC(T) all: x:A. B[x] implies:  Q product: x:A × B[x] universe: Type
Definitions unfolded in proof :  guard: {T} uall: [x:A]. B[x] subtype_rel: A ⊆B exists: x:A. B[x] prop: member: t ∈ T contra-cc: CCC(T) implies:  Q all: x:A. B[x]
Lemmas referenced :  istype-universe contra-cc_wf subtype_rel_self istype-nat
Rules used in proof :  rename Error :inhabitedIsType,  universeEquality isectElimination instantiate because_Cache Error :productIsType,  Error :dependent_pairFormation_alt,  productElimination Error :functionIsType,  independent_functionElimination hypothesis extract_by_obid introduction cut Error :universeIsType,  independent_pairEquality applyEquality hypothesisEquality functionEquality sqequalRule Error :lambdaEquality_alt,  thin dependent_functionElimination sqequalHypSubstitution Error :lambdaFormation_alt,  sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}A,B:Type.    (CCC(A)  {}\mRightarrow{}  CCC(B)  {}\mRightarrow{}  CCC(A  \mtimes{}  B))



Date html generated: 2019_06_20-PM-03_01_05
Last ObjectModification: 2019_06_12-PM-09_16_49

Theory : continuity


Home Index