Nuprl Lemma : CCC-product
∀A,B:Type.  (CCC(A) 
⇒ CCC(B) 
⇒ CCC(A × B))
Proof
Definitions occuring in Statement : 
contra-cc: CCC(T)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
product: x:A × B[x]
, 
universe: Type
Definitions unfolded in proof : 
guard: {T}
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
contra-cc: CCC(T)
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
Lemmas referenced : 
istype-universe, 
contra-cc_wf, 
subtype_rel_self, 
istype-nat
Rules used in proof : 
rename, 
Error :inhabitedIsType, 
universeEquality, 
isectElimination, 
instantiate, 
because_Cache, 
Error :productIsType, 
Error :dependent_pairFormation_alt, 
productElimination, 
Error :functionIsType, 
independent_functionElimination, 
hypothesis, 
extract_by_obid, 
introduction, 
cut, 
Error :universeIsType, 
independent_pairEquality, 
applyEquality, 
hypothesisEquality, 
functionEquality, 
sqequalRule, 
Error :lambdaEquality_alt, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
Error :lambdaFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}A,B:Type.    (CCC(A)  {}\mRightarrow{}  CCC(B)  {}\mRightarrow{}  CCC(A  \mtimes{}  B))
Date html generated:
2019_06_20-PM-03_01_05
Last ObjectModification:
2019_06_12-PM-09_16_49
Theory : continuity
Home
Index