Nuprl Lemma : CCC-bool
CCC(š¹)
Proof
Definitions occuring in Statement :
contra-cc: CCC(T)
,
bool: š¹
Definitions unfolded in proof :
cand: A cā§ B
,
true: True
,
so_lambda: Ī»2x.t[x]
,
so_apply: x[s]
,
bool: š¹
,
unit: Unit
,
it: ā
,
btrue: tt
,
ifthenelse: if b then t else f fi
,
uiff: uiff(P;Q)
,
bfalse: ff
,
sq_type: SQType(T)
,
guard: {T}
,
bnot: Ā¬bb
,
assert: āb
,
rev_implies: P
ā Q
,
iff: P
āā Q
,
less_than': less_than'(a;b)
,
pi1: fst(t)
,
so_lambda: Ī»2x y.t[x; y]
,
nat: ā
,
int_seg: {i..j-}
,
lelt: i ā¤ j < k
,
and: P ā§ Q
,
le: A ā¤ B
,
less_than: a < b
,
squash: āT
,
ge: i ā„ j
,
decidable: Dec(P)
,
or: P āØ Q
,
uimplies: b supposing a
,
not: Ā¬A
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
false: False
,
top: Top
,
so_apply: x[s1;s2]
,
contra-cc: CCC(T)
,
all: āx:A. B[x]
,
implies: P
ā Q
,
member: t ā T
,
exists: āx:A. B[x]
,
subtype_rel: A ār B
,
prop: ā
,
uall: ā[x:A]. B[x]
Lemmas referenced :
istype-assert,
bool_cases,
iff_transitivity,
assert_of_bnot,
bnot_wf,
btrue_neq_bfalse,
int_term_value_subtract_lemma,
int_formula_prop_eq_lemma,
itermSubtract_wf,
intformeq_wf,
subtract_wf,
ge_wf,
subtract-1-ge-0,
btrue_wf,
iff_imp_equal_bool,
istype-true,
equal-wf-base,
set_subtype_base,
lelt_wf,
int_subtype_base,
not_wf,
equal_wf,
decidable__and2,
decidable__equal_int,
decidable__not,
decidable__equal_bool,
decidable-exists-finite,
decidable-all-finite,
finite-function,
nsub_finite,
finite-bool,
lt_int_wf,
eqtt_to_assert,
assert_of_lt_int,
bfalse_wf,
eqff_to_assert,
bool_cases_sqequal,
subtype_base_sq,
bool_subtype_base,
assert-bnot,
iff_weakening_uiff,
assert_wf,
less_than_wf,
int_seg_subtype_nat,
istype-false,
general-fan-theorem-troelstra2,
int_seg_wf,
int_seg_properties,
nat_properties,
decidable__le,
full-omega-unsat,
intformand_wf,
intformnot_wf,
intformle_wf,
itermConstant_wf,
itermVar_wf,
istype-int,
int_formula_prop_and_lemma,
istype-void,
int_formula_prop_not_lemma,
int_formula_prop_le_lemma,
int_term_value_constant_lemma,
int_term_value_var_lemma,
int_formula_prop_wf,
istype-le,
itermAdd_wf,
int_term_value_add_lemma,
decidable__lt,
intformless_wf,
int_formula_prop_less_lemma,
istype-less_than,
istype-nat,
bool_wf,
subtype_rel_self
Rules used in proof :
baseApply,
closedConclusion,
intWeakElimination,
functionIsTypeImplies,
baseClosed,
applyLambdaEquality,
intEquality,
sqequalBase,
inhabitedIsType,
equalityElimination,
equalityIstype,
equalityTransitivity,
equalitySymmetry,
promote_hyp,
cumulativity,
functionExtensionality,
functionEquality,
dependent_functionElimination,
lambdaEquality_alt,
productEquality,
natural_numberEquality,
setElimination,
rename,
dependent_set_memberEquality_alt,
productElimination,
imageElimination,
unionElimination,
independent_isectElimination,
approximateComputation,
independent_functionElimination,
dependent_pairFormation_alt,
int_eqEquality,
isect_memberEquality_alt,
voidElimination,
independent_pairFormation,
addEquality,
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation_alt,
cut,
sqequalRule,
functionIsType,
introduction,
extract_by_obid,
hypothesis,
universeIsType,
productIsType,
because_Cache,
applyEquality,
hypothesisEquality,
thin,
instantiate,
sqequalHypSubstitution,
isectElimination,
universeEquality
Latex:
CCC(\mBbbB{})
Date html generated:
2019_10_15-AM-10_27_55
Last ObjectModification:
2019_08_26-PM-04_00_56
Theory : continuity
Home
Index