Nuprl Lemma : CCC-bool
CCC(𝔹)
Proof
Definitions occuring in Statement : 
contra-cc: CCC(T), 
bool: 𝔹
Definitions unfolded in proof : 
cand: A c∧ B, 
true: True, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
uiff: uiff(P;Q), 
bfalse: ff, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
rev_implies: P ⇐ Q, 
iff: P ⇐⇒ Q, 
less_than': less_than'(a;b), 
pi1: fst(t), 
so_lambda: λ2x y.t[x; y], 
nat: ℕ, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
and: P ∧ Q, 
le: A ≤ B, 
less_than: a < b, 
squash: ↓T, 
ge: i ≥ j , 
decidable: Dec(P), 
or: P ∨ Q, 
uimplies: b supposing a, 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
false: False, 
top: Top, 
so_apply: x[s1;s2], 
contra-cc: CCC(T), 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
exists: ∃x:A. B[x], 
subtype_rel: A ⊆r B, 
prop: ℙ, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
istype-assert, 
bool_cases, 
iff_transitivity, 
assert_of_bnot, 
bnot_wf, 
btrue_neq_bfalse, 
int_term_value_subtract_lemma, 
int_formula_prop_eq_lemma, 
itermSubtract_wf, 
intformeq_wf, 
subtract_wf, 
ge_wf, 
subtract-1-ge-0, 
btrue_wf, 
iff_imp_equal_bool, 
istype-true, 
equal-wf-base, 
set_subtype_base, 
lelt_wf, 
int_subtype_base, 
not_wf, 
equal_wf, 
decidable__and2, 
decidable__equal_int, 
decidable__not, 
decidable__equal_bool, 
decidable-exists-finite, 
decidable-all-finite, 
finite-function, 
nsub_finite, 
finite-bool, 
lt_int_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
bfalse_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
less_than_wf, 
int_seg_subtype_nat, 
istype-false, 
general-fan-theorem-troelstra2, 
int_seg_wf, 
int_seg_properties, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
istype-le, 
itermAdd_wf, 
int_term_value_add_lemma, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
istype-less_than, 
istype-nat, 
bool_wf, 
subtype_rel_self
Rules used in proof : 
baseApply, 
closedConclusion, 
intWeakElimination, 
functionIsTypeImplies, 
baseClosed, 
applyLambdaEquality, 
intEquality, 
sqequalBase, 
inhabitedIsType, 
equalityElimination, 
equalityIstype, 
equalityTransitivity, 
equalitySymmetry, 
promote_hyp, 
cumulativity, 
functionExtensionality, 
functionEquality, 
dependent_functionElimination, 
lambdaEquality_alt, 
productEquality, 
natural_numberEquality, 
setElimination, 
rename, 
dependent_set_memberEquality_alt, 
productElimination, 
imageElimination, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
addEquality, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
sqequalRule, 
functionIsType, 
introduction, 
extract_by_obid, 
hypothesis, 
universeIsType, 
productIsType, 
because_Cache, 
applyEquality, 
hypothesisEquality, 
thin, 
instantiate, 
sqequalHypSubstitution, 
isectElimination, 
universeEquality
Latex:
CCC(\mBbbB{})
Date html generated:
2019_10_15-AM-10_27_55
Last ObjectModification:
2019_08_26-PM-04_00_56
Theory : continuity
Home
Index