Nuprl Lemma : CCC-bool

CCC(𝔹)


Proof




Definitions occuring in Statement :  contra-cc: CCC(T) bool: 𝔹
Definitions unfolded in proof :  cand: c∧ B true: True so_lambda: λ2x.t[x] so_apply: x[s] bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b rev_implies:  Q iff: ⇐⇒ Q less_than': less_than'(a;b) pi1: fst(t) so_lambda: λ2y.t[x; y] nat: int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B less_than: a < b squash: T ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top so_apply: x[s1;s2] contra-cc: CCC(T) all: x:A. B[x] implies:  Q member: t ∈ T exists: x:A. B[x] subtype_rel: A ⊆B prop: uall: [x:A]. B[x]
Lemmas referenced :  istype-assert bool_cases iff_transitivity assert_of_bnot bnot_wf btrue_neq_bfalse int_term_value_subtract_lemma int_formula_prop_eq_lemma itermSubtract_wf intformeq_wf subtract_wf ge_wf subtract-1-ge-0 btrue_wf iff_imp_equal_bool istype-true equal-wf-base set_subtype_base lelt_wf int_subtype_base not_wf equal_wf decidable__and2 decidable__equal_int decidable__not decidable__equal_bool decidable-exists-finite decidable-all-finite finite-function nsub_finite finite-bool lt_int_wf eqtt_to_assert assert_of_lt_int bfalse_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot iff_weakening_uiff assert_wf less_than_wf int_seg_subtype_nat istype-false general-fan-theorem-troelstra2 int_seg_wf int_seg_properties nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf istype-le itermAdd_wf int_term_value_add_lemma decidable__lt intformless_wf int_formula_prop_less_lemma istype-less_than istype-nat bool_wf subtype_rel_self
Rules used in proof :  baseApply closedConclusion intWeakElimination functionIsTypeImplies baseClosed applyLambdaEquality intEquality sqequalBase inhabitedIsType equalityElimination equalityIstype equalityTransitivity equalitySymmetry promote_hyp cumulativity functionExtensionality functionEquality dependent_functionElimination lambdaEquality_alt productEquality natural_numberEquality setElimination rename dependent_set_memberEquality_alt productElimination imageElimination unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt voidElimination independent_pairFormation addEquality sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut sqequalRule functionIsType introduction extract_by_obid hypothesis universeIsType productIsType because_Cache applyEquality hypothesisEquality thin instantiate sqequalHypSubstitution isectElimination universeEquality

Latex:
CCC(\mBbbB{})



Date html generated: 2019_10_15-AM-10_27_55
Last ObjectModification: 2019_08_26-PM-04_00_56

Theory : continuity


Home Index