Nuprl Lemma : general-fan-theorem-troelstra2
∀X:n:ℕ ⟶ (ℕn ⟶ 𝔹) ⟶ ℙ. ((∀f:ℕ ⟶ 𝔹. ∃n:ℕ. X[n;f]) ⇒ (∃k:ℕ. ∀f:ℕ ⟶ 𝔹. ∃n:ℕk. X[n;f]))
Proof
Definitions occuring in Statement : 
int_seg: {i..j-}, 
nat: ℕ, 
bool: 𝔹, 
prop: ℙ, 
so_apply: x[s1;s2], 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
implies: P ⇒ Q, 
function: x:A ⟶ B[x], 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
so_lambda: λ2x.t[x], 
so_apply: x[s1;s2], 
subtype_rel: A ⊆r B, 
nat: ℕ, 
uimplies: b supposing a, 
le: A ≤ B, 
and: P ∧ Q, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
so_apply: x[s], 
exists: ∃x:A. B[x], 
ge: i ≥ j , 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
top: Top, 
int_seg: {i..j-}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
uiff: uiff(P;Q), 
subtract: n - m, 
sq_stable: SqStable(P), 
lelt: i ≤ j < k, 
squash: ↓T, 
true: True, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
band: p ∧b q, 
ifthenelse: if b then t else f fi , 
outl: outl(x), 
isl: isl(x), 
less_than: a < b, 
bfalse: ff, 
pi1: fst(t), 
guard: {T}, 
rev_uimplies: rev_uimplies(P;Q), 
cand: A c∧ B, 
sq_type: SQType(T), 
assert: ↑b, 
bnot: ¬bb
Lemmas referenced : 
all_wf, 
nat_wf, 
bool_wf, 
exists_wf, 
subtype_rel_function, 
int_seg_wf, 
int_seg_subtype_nat, 
false_wf, 
subtype_rel_self, 
weak-continuity-implies-strong-cantor-unique, 
pi1_wf, 
equal_wf, 
fan_theorem, 
assert_wf, 
b-exists_wf, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
le_wf, 
isl_wf, 
unit_wf2, 
int_seg_subtype, 
not-le-2, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
add-swap, 
minus-one-mul-top, 
add-commutes, 
sq_stable__le, 
less-iff-le, 
add-associates, 
zero-add, 
add_functionality_wrt_le, 
le-add-cancel2, 
eqtt_to_assert, 
assert_elim, 
bfalse_wf, 
and_wf, 
btrue_neq_bfalse, 
top_wf, 
less_than_wf, 
btrue_wf, 
decidable__assert, 
imax_wf, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
assert-b-exists, 
add_nat_wf, 
add-is-int-iff, 
lelt_wf, 
assert_of_band, 
subtype_base_sq, 
bool_subtype_base, 
imax_ub, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
union_subtype_base, 
set_subtype_base, 
int_subtype_base, 
unit_subtype_base, 
lt_int_wf, 
assert_of_lt_int, 
eqff_to_assert, 
bool_cases_sqequal, 
assert-bnot, 
int_seg_properties, 
outl_wf, 
subtype_rel_union, 
assert_functionality_wrt_uiff, 
squash_wf, 
true_wf, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
functionEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
hypothesisEquality, 
natural_numberEquality, 
setElimination, 
rename, 
because_Cache, 
independent_isectElimination, 
independent_pairFormation, 
cumulativity, 
universeEquality, 
dependent_functionElimination, 
functionExtensionality, 
instantiate, 
productElimination, 
dependent_pairEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
dependent_set_memberEquality, 
addEquality, 
unionElimination, 
approximateComputation, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
minusEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
equalityElimination, 
unionEquality, 
applyLambdaEquality, 
lessCases, 
isect_memberFormation, 
axiomSqEquality, 
inlEquality, 
pointwiseFunctionality, 
promote_hyp, 
baseApply, 
closedConclusion, 
inrFormation, 
inlFormation
Latex:
\mforall{}X:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  \mBbbP{}.  ((\mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}.  \mexists{}n:\mBbbN{}.  X[n;f])  {}\mRightarrow{}  (\mexists{}k:\mBbbN{}.  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}.  \mexists{}n:\mBbbN{}k.  X[n;f]))
Date html generated:
2019_06_20-PM-03_00_06
Last ObjectModification:
2018_08_20-PM-09_41_05
Theory : continuity
Home
Index