Nuprl Lemma : general-fan-theorem-troelstra2

X:n:ℕ ⟶ (ℕn ⟶ 𝔹) ⟶ ℙ((∀f:ℕ ⟶ 𝔹. ∃n:ℕX[n;f])  (∃k:ℕ. ∀f:ℕ ⟶ 𝔹. ∃n:ℕk. X[n;f]))


Proof




Definitions occuring in Statement :  int_seg: {i..j-} nat: bool: 𝔹 prop: so_apply: x[s1;s2] all: x:A. B[x] exists: x:A. B[x] implies:  Q function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s1;s2] subtype_rel: A ⊆B nat: uimplies: supposing a le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A so_apply: x[s] exists: x:A. B[x] ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top int_seg: {i..j-} iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) subtract: m sq_stable: SqStable(P) lelt: i ≤ j < k squash: T true: True bool: 𝔹 unit: Unit it: btrue: tt band: p ∧b q ifthenelse: if then else fi  outl: outl(x) isl: isl(x) less_than: a < b bfalse: ff pi1: fst(t) guard: {T} rev_uimplies: rev_uimplies(P;Q) cand: c∧ B sq_type: SQType(T) assert: b bnot: ¬bb
Lemmas referenced :  all_wf nat_wf bool_wf exists_wf subtype_rel_function int_seg_wf int_seg_subtype_nat false_wf subtype_rel_self weak-continuity-implies-strong-cantor-unique pi1_wf equal_wf fan_theorem assert_wf b-exists_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf le_wf isl_wf unit_wf2 int_seg_subtype not-le-2 condition-implies-le minus-add minus-one-mul add-swap minus-one-mul-top add-commutes sq_stable__le less-iff-le add-associates zero-add add_functionality_wrt_le le-add-cancel2 eqtt_to_assert assert_elim bfalse_wf and_wf btrue_neq_bfalse top_wf less_than_wf btrue_wf decidable__assert imax_wf intformeq_wf int_formula_prop_eq_lemma assert-b-exists add_nat_wf add-is-int-iff lelt_wf assert_of_band subtype_base_sq bool_subtype_base imax_ub decidable__lt intformless_wf int_formula_prop_less_lemma union_subtype_base set_subtype_base int_subtype_base unit_subtype_base lt_int_wf assert_of_lt_int eqff_to_assert bool_cases_sqequal assert-bnot int_seg_properties outl_wf subtype_rel_union assert_functionality_wrt_uiff squash_wf true_wf iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin functionEquality hypothesis sqequalRule lambdaEquality applyEquality hypothesisEquality natural_numberEquality setElimination rename because_Cache independent_isectElimination independent_pairFormation cumulativity universeEquality dependent_functionElimination functionExtensionality instantiate productElimination dependent_pairEquality equalityTransitivity equalitySymmetry independent_functionElimination dependent_set_memberEquality addEquality unionElimination approximateComputation dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality minusEquality imageMemberEquality baseClosed imageElimination equalityElimination unionEquality applyLambdaEquality lessCases isect_memberFormation axiomSqEquality inlEquality pointwiseFunctionality promote_hyp baseApply closedConclusion inrFormation inlFormation

Latex:
\mforall{}X:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  \mBbbP{}.  ((\mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}.  \mexists{}n:\mBbbN{}.  X[n;f])  {}\mRightarrow{}  (\mexists{}k:\mBbbN{}.  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}.  \mexists{}n:\mBbbN{}k.  X[n;f]))



Date html generated: 2019_06_20-PM-03_00_06
Last ObjectModification: 2018_08_20-PM-09_41_05

Theory : continuity


Home Index