Nuprl Lemma : weak-continuity-implies-strong-cantor-unique

F:(ℕ ⟶ 𝔹) ⟶ ℕ
  ∃M:n:ℕ ⟶ (ℕn ⟶ 𝔹) ⟶ (ℕ?)
   ∀f:ℕ ⟶ 𝔹. ∃n:ℕ(((M f) (inl (F f)) ∈ (ℕ?)) ∧ (∀m:ℕ((↑isl(M f))  (m n ∈ ℕ))))


Proof




Definitions occuring in Statement :  int_seg: {i..j-} nat: assert: b isl: isl(x) bool: 𝔹 all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q unit: Unit apply: a function: x:A ⟶ B[x] inl: inl x union: left right natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T exists: x:A. B[x] uall: [x:A]. B[x] nat: and: P ∧ Q prop: so_lambda: λ2x.t[x] subtype_rel: A ⊆B so_apply: x[s] uimplies: supposing a le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A implies:  Q decidable: Dec(P) or: P ∨ Q cand: c∧ B squash: T true: True guard: {T} uiff: uiff(P;Q) top: Top assert: b ifthenelse: if then else fi  bfalse: ff ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) isl: isl(x) sq_type: SQType(T) btrue: tt iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  weak-continuity-implies-strong-cantor nat_wf bool_wf strong-continuity-test_wf int_seg_wf all_wf exists_wf equal_wf unit_wf2 subtype_rel_dep_function int_seg_subtype_nat false_wf subtype_rel_self assert_wf isl_wf decidable__assert strong-continuity-test-prop1 decidable__lt assert_functionality_wrt_uiff squash_wf true_wf isr-not-isl subtype_rel_union top_wf decidable__equal_int nat_properties satisfiable-full-omega-tt intformand_wf intformnot_wf intformeq_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_wf decidable__le intformle_wf itermConstant_wf int_formula_prop_le_lemma int_term_value_constant_lemma le_wf intformless_wf int_formula_prop_less_lemma not-isl-assert-isr strong-continuity-test-prop2 and_wf btrue_wf subtype_base_sq bool_subtype_base iff_weakening_equal strong-continuity-test-prop3
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality productElimination functionEquality hypothesis dependent_pairFormation lambdaEquality isectElimination functionExtensionality applyEquality natural_numberEquality setElimination rename because_Cache sqequalRule productEquality unionEquality independent_isectElimination independent_pairFormation inlEquality equalityTransitivity equalitySymmetry unionElimination independent_functionElimination imageElimination cumulativity universeEquality imageMemberEquality baseClosed isect_memberEquality voidElimination voidEquality int_eqEquality intEquality computeAll dependent_set_memberEquality applyLambdaEquality instantiate

Latex:
\mforall{}F:(\mBbbN{}  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  \mBbbN{}
    \mexists{}M:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  (\mBbbN{}?)
      \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}.  \mexists{}n:\mBbbN{}.  (((M  n  f)  =  (inl  (F  f)))  \mwedge{}  (\mforall{}m:\mBbbN{}.  ((\muparrow{}isl(M  m  f))  {}\mRightarrow{}  (m  =  n))))



Date html generated: 2017_04_17-AM-10_00_15
Last ObjectModification: 2017_02_27-PM-05_53_10

Theory : continuity


Home Index