Nuprl Lemma : weak-continuity-implies-strong-cantor

F:(ℕ ⟶ 𝔹) ⟶ ℕ
  ∃M:n:ℕ ⟶ (ℕn ⟶ 𝔹) ⟶ (ℕ?)
   ∀f:ℕ ⟶ 𝔹((∃n:ℕ((M f) (inl (F f)) ∈ (ℕ?))) ∧ (∀n:ℕ(M f) (inl (F f)) ∈ (ℕ?) supposing ↑isl(M f)))


Proof




Definitions occuring in Statement :  int_seg: {i..j-} nat: assert: b isl: isl(x) bool: 𝔹 uimplies: supposing a all: x:A. B[x] exists: x:A. B[x] and: P ∧ Q unit: Unit apply: a function: x:A ⟶ B[x] inl: inl x union: left right natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T exists: x:A. B[x] uall: [x:A]. B[x] nat: implies:  Q exposed-it: exposed-it bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a bfalse: ff prop: or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False not: ¬A so_lambda: λ2x.t[x] subtype_rel: A ⊆B so_apply: x[s] le: A ≤ B less_than': less_than'(a;b) ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top ext2Cantor: ext2Cantor(n;f;d) int_seg: {i..j-} lelt: i ≤ j < k isl: isl(x)
Lemmas referenced :  strong-continuity2-implies-uniform-continuity2-nat nat_wf bool_wf le_int_wf eqtt_to_assert assert_of_le_int ext2Cantor_wf int_seg_wf btrue_wf unit_wf2 eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot le_wf all_wf exists_wf subtype_rel_dep_function int_seg_subtype_nat false_wf subtype_rel_self isect_wf assert_wf isl_wf nat_properties satisfiable-full-omega-tt intformnot_wf intformle_wf itermVar_wf int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_formula_prop_wf lt_int_wf assert_of_lt_int less_than_wf int_seg_properties intformand_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_less_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality productElimination functionEquality hypothesis dependent_pairFormation lambdaEquality isectElimination setElimination rename because_Cache unionElimination equalityElimination sqequalRule independent_isectElimination inlEquality applyEquality functionExtensionality natural_numberEquality equalityTransitivity equalitySymmetry promote_hyp instantiate cumulativity independent_functionElimination voidElimination inrEquality axiomEquality independent_pairFormation productEquality unionEquality int_eqEquality intEquality isect_memberEquality voidEquality computeAll isect_memberFormation

Latex:
\mforall{}F:(\mBbbN{}  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  \mBbbN{}
    \mexists{}M:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  (\mBbbN{}?)
      \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}
          ((\mexists{}n:\mBbbN{}.  ((M  n  f)  =  (inl  (F  f))))  \mwedge{}  (\mforall{}n:\mBbbN{}.  (M  n  f)  =  (inl  (F  f))  supposing  \muparrow{}isl(M  n  f)))



Date html generated: 2017_04_17-AM-10_00_05
Last ObjectModification: 2017_02_27-PM-05_53_14

Theory : continuity


Home Index