Nuprl Lemma : strong-continuity2-implies-uniform-continuity2-nat

āˆ€F:(ā„• āŸ¶ š”¹) āŸ¶ ā„•. āˆƒn:ā„•. āˆ€f,g:ā„• āŸ¶ š”¹.  ((f g āˆˆ (ā„•n āŸ¶ š”¹)) ā‡’ ((F f) (F g) āˆˆ ā„•))


Proof




Definitions occuring in Statement :  int_seg: {i..j-} nat: ā„• bool: š”¹ all: āˆ€x:A. B[x] exists: āˆƒx:A. B[x] implies: ā‡’ Q apply: a function: x:A āŸ¶ B[x] natural_number: $n equal: t āˆˆ T
Definitions unfolded in proof :  all: āˆ€x:A. B[x] member: t āˆˆ T subtype_rel: A āŠ†B nat: ā„• implies: ā‡’ Q uniform-continuity-pi: ucA(T;F;n) iff: ā‡ā‡’ Q and: P āˆ§ Q rev_implies: ā‡ Q uall: āˆ€[x:A]. B[x] so_lambda: Ī»2x.t[x] prop: ā„™ so_apply: x[s] uimplies: supposing a le: A ā‰¤ B less_than': less_than'(a;b) false: False not: Ā¬A exists: āˆƒx:A. B[x] true: True so_lambda: Ī»2y.t[x; y] so_apply: x[s1;s2] cand: cāˆ§ B ge: i ā‰„  decidable: Dec(P) or: P āˆØ Q satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top guard: {T} quotient: x,y:A//B[x; y] squash: ā†“T sq_type: SQType(T) uniform-continuity-pi-pi: ucpB(T;F;n)
Lemmas referenced :  nat_wf bool_wf strong-continuity2-implies-uniform-continuity-int uniform-continuity-pi-pi-prop2 decidable__equal_nat exists_wf all_wf equal_wf int_seg_wf subtype_rel_dep_function int_seg_subtype_nat false_wf subtype_rel_self true_wf quotient_wf uniform-continuity-pi-pi_wf equiv_rel_true quotient-member-eq equal_subtype nat_properties decidable__equal_int satisfiable-full-omega-tt intformand_wf intformnot_wf intformeq_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_wf decidable__le intformle_wf itermConstant_wf int_formula_prop_le_lemma int_term_value_constant_lemma le_wf equal-wf-base member_wf squash_wf prop-truncation-implies uniform-continuity-pi-pi-prop subtype_base_sq set_subtype_base int_subtype_base uniform-continuity-pi_wf less_than'_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation functionEquality cut introduction extract_by_obid hypothesis sqequalHypSubstitution dependent_functionElimination thin functionExtensionality applyEquality hypothesisEquality lambdaEquality setElimination rename sqequalRule independent_functionElimination because_Cache productElimination independent_pairFormation isectElimination natural_numberEquality independent_isectElimination intEquality promote_hyp equalityTransitivity equalitySymmetry dependent_pairEquality unionElimination dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality computeAll dependent_set_memberEquality applyLambdaEquality pointwiseFunctionality pertypeElimination productEquality imageElimination imageMemberEquality baseClosed instantiate cumulativity independent_pairEquality equalityElimination axiomEquality

Latex:
\mforall{}F:(\mBbbN{}  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  \mBbbN{}.  \mexists{}n:\mBbbN{}.  \mforall{}f,g:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}.    ((f  =  g)  {}\mRightarrow{}  ((F  f)  =  (F  g)))



Date html generated: 2017_04_17-AM-09_59_33
Last ObjectModification: 2017_02_27-PM-05_52_48

Theory : continuity


Home Index