Nuprl Lemma : strong-continuity2-implies-uniform-continuity2-nat
āF:(ā ā¶ š¹) ā¶ ā. ān:ā. āf,g:ā ā¶ š¹. ((f = g ā (ān ā¶ š¹))
ā ((F f) = (F g) ā ā))
Proof
Definitions occuring in Statement :
int_seg: {i..j-}
,
nat: ā
,
bool: š¹
,
all: āx:A. B[x]
,
exists: āx:A. B[x]
,
implies: P
ā Q
,
apply: f a
,
function: x:A ā¶ B[x]
,
natural_number: $n
,
equal: s = t ā T
Definitions unfolded in proof :
all: āx:A. B[x]
,
member: t ā T
,
subtype_rel: A ār B
,
nat: ā
,
implies: P
ā Q
,
uniform-continuity-pi: ucA(T;F;n)
,
iff: P
āā Q
,
and: P ā§ Q
,
rev_implies: P
ā Q
,
uall: ā[x:A]. B[x]
,
so_lambda: Ī»2x.t[x]
,
prop: ā
,
so_apply: x[s]
,
uimplies: b supposing a
,
le: A ā¤ B
,
less_than': less_than'(a;b)
,
false: False
,
not: Ā¬A
,
exists: āx:A. B[x]
,
true: True
,
so_lambda: Ī»2x y.t[x; y]
,
so_apply: x[s1;s2]
,
cand: A cā§ B
,
ge: i ā„ j
,
decidable: Dec(P)
,
or: P āØ Q
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
top: Top
,
guard: {T}
,
quotient: x,y:A//B[x; y]
,
squash: āT
,
sq_type: SQType(T)
,
uniform-continuity-pi-pi: ucpB(T;F;n)
Lemmas referenced :
nat_wf,
bool_wf,
strong-continuity2-implies-uniform-continuity-int,
uniform-continuity-pi-pi-prop2,
decidable__equal_nat,
exists_wf,
all_wf,
equal_wf,
int_seg_wf,
subtype_rel_dep_function,
int_seg_subtype_nat,
false_wf,
subtype_rel_self,
true_wf,
quotient_wf,
uniform-continuity-pi-pi_wf,
equiv_rel_true,
quotient-member-eq,
equal_subtype,
nat_properties,
decidable__equal_int,
satisfiable-full-omega-tt,
intformand_wf,
intformnot_wf,
intformeq_wf,
itermVar_wf,
int_formula_prop_and_lemma,
int_formula_prop_not_lemma,
int_formula_prop_eq_lemma,
int_term_value_var_lemma,
int_formula_prop_wf,
decidable__le,
intformle_wf,
itermConstant_wf,
int_formula_prop_le_lemma,
int_term_value_constant_lemma,
le_wf,
equal-wf-base,
member_wf,
squash_wf,
prop-truncation-implies,
uniform-continuity-pi-pi-prop,
subtype_base_sq,
set_subtype_base,
int_subtype_base,
uniform-continuity-pi_wf,
less_than'_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation,
functionEquality,
cut,
introduction,
extract_by_obid,
hypothesis,
sqequalHypSubstitution,
dependent_functionElimination,
thin,
functionExtensionality,
applyEquality,
hypothesisEquality,
lambdaEquality,
setElimination,
rename,
sqequalRule,
independent_functionElimination,
because_Cache,
productElimination,
independent_pairFormation,
isectElimination,
natural_numberEquality,
independent_isectElimination,
intEquality,
promote_hyp,
equalityTransitivity,
equalitySymmetry,
dependent_pairEquality,
unionElimination,
dependent_pairFormation,
int_eqEquality,
isect_memberEquality,
voidElimination,
voidEquality,
computeAll,
dependent_set_memberEquality,
applyLambdaEquality,
pointwiseFunctionality,
pertypeElimination,
productEquality,
imageElimination,
imageMemberEquality,
baseClosed,
instantiate,
cumulativity,
independent_pairEquality,
equalityElimination,
axiomEquality
Latex:
\mforall{}F:(\mBbbN{} {}\mrightarrow{} \mBbbB{}) {}\mrightarrow{} \mBbbN{}. \mexists{}n:\mBbbN{}. \mforall{}f,g:\mBbbN{} {}\mrightarrow{} \mBbbB{}. ((f = g) {}\mRightarrow{} ((F f) = (F g)))
Date html generated:
2017_04_17-AM-09_59_33
Last ObjectModification:
2017_02_27-PM-05_52_48
Theory : continuity
Home
Index