Nuprl Lemma : strong-continuity-test-prop1
∀[T:Type]. ∀[M:n:ℕ ⟶ (ℕn ⟶ T) ⟶ (ℕ?)]. ∀[n:ℕ]. ∀[f:ℕn ⟶ T]. ∀[b:ℕ?].
  ((↑isl(strong-continuity-test(M;n;f;b)))
  ⇒ ((↑isl(b)) ∧ (∀i:ℕ. (i < n ⇒ (↑isr(M i f)))) ∧ (strong-continuity-test(M;n;f;b) = b ∈ (ℕ?))))
Proof
Definitions occuring in Statement : 
strong-continuity-test: strong-continuity-test(M;n;f;b), 
int_seg: {i..j-}, 
nat: ℕ, 
assert: ↑b, 
isr: isr(x), 
isl: isl(x), 
less_than: a < b, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
and: P ∧ Q, 
unit: Unit, 
apply: f a, 
function: x:A ⟶ B[x], 
union: left + right, 
natural_number: $n, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
top: Top, 
exists: ∃x:A. B[x], 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
or: P ∨ Q, 
decidable: Dec(P), 
all: ∀x:A. B[x], 
ge: i ≥ j , 
prop: ℙ, 
implies: P ⇒ Q, 
not: ¬A, 
false: False, 
less_than': less_than'(a;b), 
le: A ≤ B, 
and: P ∧ Q, 
uimplies: b supposing a, 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
subtype_rel: A ⊆r B, 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
guard: {T}, 
primrec: primrec(n;b;c), 
strong-continuity-test: strong-continuity-test(M;n;f;b), 
cand: A c∧ B, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
subtract: n - m, 
eq_int: (i =z j), 
bfalse: ff, 
rev_implies: P ⇐ Q, 
iff: P ⇐⇒ Q, 
uiff: uiff(P;Q), 
sq_type: SQType(T), 
assert: ↑b, 
isl: isl(x), 
rev_uimplies: rev_uimplies(P;Q), 
true: True, 
label: ...$L... t, 
squash: ↓T, 
nequal: a ≠ b ∈ T , 
bnot: ¬bb, 
it: ⋅, 
unit: Unit, 
bool: 𝔹, 
exposed-it: exposed-it
Lemmas referenced : 
assert_witness, 
less_than_wf, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
intformless_wf, 
itermVar_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
nat_properties, 
false_wf, 
int_seg_subtype, 
subtype_rel_dep_function, 
isr_wf, 
int_seg_wf, 
strong-continuity-test_wf, 
unit_wf2, 
nat_wf, 
isl_wf, 
assert_wf, 
int_term_value_subtract_lemma, 
itermSubtract_wf, 
subtract_wf, 
le_wf, 
less_than_irreflexivity, 
less_than_transitivity1, 
ge_wf, 
int_term_value_constant_lemma, 
itermConstant_wf, 
full-omega-unsat, 
strong-continuity-test-unroll, 
assert_of_bnot, 
iff_weakening_uiff, 
iff_transitivity, 
eqff_to_assert, 
assert_of_eq_int, 
eqtt_to_assert, 
bool_subtype_base, 
bool_wf, 
subtype_base_sq, 
bool_cases, 
int_subtype_base, 
equal-wf-base, 
not_wf, 
bnot_wf, 
eq_int_wf, 
int_formula_prop_eq_lemma, 
intformeq_wf, 
decidable__lt, 
decidable__equal_int, 
true_wf, 
squash_wf, 
assert_functionality_wrt_uiff, 
not-isl-assert-isr, 
neg_assert_of_eq_int, 
assert-bnot, 
bool_cases_sqequal, 
equal_wf
Rules used in proof : 
axiomEquality, 
independent_functionElimination, 
independent_pairEquality, 
productElimination, 
isect_memberFormation, 
universeEquality, 
functionEquality, 
unionEquality, 
computeAll, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
intEquality, 
int_eqEquality, 
dependent_pairFormation, 
unionElimination, 
dependent_functionElimination, 
lambdaFormation, 
independent_pairFormation, 
independent_isectElimination, 
lambdaEquality, 
sqequalRule, 
because_Cache, 
rename, 
setElimination, 
natural_numberEquality, 
applyEquality, 
functionExtensionality, 
hypothesisEquality, 
cumulativity, 
hypothesis, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
dependent_set_memberEquality, 
intWeakElimination, 
approximateComputation, 
impliesFunctionality, 
instantiate, 
baseClosed, 
equalitySymmetry, 
equalityTransitivity, 
imageMemberEquality, 
imageElimination, 
promote_hyp, 
equalityElimination
Latex:
\mforall{}[T:Type].  \mforall{}[M:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  T)  {}\mrightarrow{}  (\mBbbN{}?)].  \mforall{}[n:\mBbbN{}].  \mforall{}[f:\mBbbN{}n  {}\mrightarrow{}  T].  \mforall{}[b:\mBbbN{}?].
    ((\muparrow{}isl(strong-continuity-test(M;n;f;b)))
    {}\mRightarrow{}  ((\muparrow{}isl(b))  \mwedge{}  (\mforall{}i:\mBbbN{}.  (i  <  n  {}\mRightarrow{}  (\muparrow{}isr(M  i  f))))  \mwedge{}  (strong-continuity-test(M;n;f;b)  =  b)))
Date html generated:
2018_05_21-PM-01_17_44
Last ObjectModification:
2018_05_18-PM-04_03_28
Theory : continuity
Home
Index