Nuprl Lemma : strong-continuity-test-unroll

[T:Type]. ∀[M:n:ℕ ⟶ (ℕn ⟶ T) ⟶ (ℕ?)]. ∀[n:ℕ]. ∀[f,b:Top].
  (strong-continuity-test(M;n;f;b) if (n =z 0) then b
  if isl(M (n 1) f) then inr Ax 
  else strong-continuity-test(M;n 1;f;b)
  fi )


Proof




Definitions occuring in Statement :  strong-continuity-test: strong-continuity-test(M;n;f;b) int_seg: {i..j-} nat: ifthenelse: if then else fi  isl: isl(x) eq_int: (i =z j) uall: [x:A]. B[x] top: Top unit: Unit apply: a function: x:A ⟶ B[x] inr: inr  union: left right subtract: m natural_number: $n universe: Type sqequal: t axiom: Ax
Definitions unfolded in proof :  member: t ∈ T uall: [x:A]. B[x] nat: strong-continuity-test: strong-continuity-test(M;n;f;b) top: Top all: x:A. B[x] implies:  Q exposed-it: exposed-it bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] prop: or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False nequal: a ≠ b ∈  ge: i ≥  not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla)
Lemmas referenced :  top_wf nat_wf int_seg_wf unit_wf2 primrec-unroll lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int eq_int_wf assert_of_eq_int eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int nat_properties full-omega-unsat intformand_wf intformless_wf itermVar_wf itermConstant_wf intformnot_wf intformeq_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_formula_prop_le_lemma int_formula_prop_wf not_functionality_wrt_uiff assert_wf less_than_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut introduction extract_by_obid hypothesis because_Cache functionEquality sqequalHypSubstitution isectElimination thin natural_numberEquality setElimination rename hypothesisEquality unionEquality universeEquality isect_memberFormation axiomSqEquality sqequalRule isect_memberEquality voidElimination voidEquality lambdaFormation unionElimination equalityElimination productElimination independent_isectElimination equalityTransitivity equalitySymmetry dependent_pairFormation promote_hyp dependent_functionElimination instantiate cumulativity independent_functionElimination approximateComputation lambdaEquality int_eqEquality intEquality independent_pairFormation

Latex:
\mforall{}[T:Type].  \mforall{}[M:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  T)  {}\mrightarrow{}  (\mBbbN{}?)].  \mforall{}[n:\mBbbN{}].  \mforall{}[f,b:Top].
    (strong-continuity-test(M;n;f;b)  \msim{}  if  (n  =\msubz{}  0)  then  b
    if  isl(M  (n  -  1)  f)  then  inr  Ax 
    else  strong-continuity-test(M;n  -  1;f;b)
    fi  )



Date html generated: 2019_06_20-PM-02_50_01
Last ObjectModification: 2018_09_26-AM-09_54_16

Theory : continuity


Home Index