Nuprl Lemma : strong-continuity-test-unroll
∀[T:Type]. ∀[M:n:ℕ ⟶ (ℕn ⟶ T) ⟶ (ℕ?)]. ∀[n:ℕ]. ∀[f,b:Top].
  (strong-continuity-test(M;n;f;b) ~ if (n =z 0) then b
  if isl(M (n - 1) f) then inr Ax 
  else strong-continuity-test(M;n - 1;f;b)
  fi )
Proof
Definitions occuring in Statement : 
strong-continuity-test: strong-continuity-test(M;n;f;b)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
ifthenelse: if b then t else f fi 
, 
isl: isl(x)
, 
eq_int: (i =z j)
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
unit: Unit
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
inr: inr x 
, 
union: left + right
, 
subtract: n - m
, 
natural_number: $n
, 
universe: Type
, 
sqequal: s ~ t
, 
axiom: Ax
Definitions unfolded in proof : 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
nat: ℕ
, 
strong-continuity-test: strong-continuity-test(M;n;f;b)
, 
top: Top
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
exposed-it: exposed-it
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
false: False
, 
nequal: a ≠ b ∈ T 
, 
ge: i ≥ j 
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
Lemmas referenced : 
top_wf, 
nat_wf, 
int_seg_wf, 
unit_wf2, 
primrec-unroll, 
lt_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
eq_int_wf, 
assert_of_eq_int, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformnot_wf, 
intformeq_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
not_functionality_wrt_uiff, 
assert_wf, 
less_than_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
because_Cache, 
functionEquality, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesisEquality, 
unionEquality, 
universeEquality, 
isect_memberFormation, 
axiomSqEquality, 
sqequalRule, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
productElimination, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
dependent_pairFormation, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
cumulativity, 
independent_functionElimination, 
approximateComputation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
independent_pairFormation
Latex:
\mforall{}[T:Type].  \mforall{}[M:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  T)  {}\mrightarrow{}  (\mBbbN{}?)].  \mforall{}[n:\mBbbN{}].  \mforall{}[f,b:Top].
    (strong-continuity-test(M;n;f;b)  \msim{}  if  (n  =\msubz{}  0)  then  b
    if  isl(M  (n  -  1)  f)  then  inr  Ax 
    else  strong-continuity-test(M;n  -  1;f;b)
    fi  )
Date html generated:
2019_06_20-PM-02_50_01
Last ObjectModification:
2018_09_26-AM-09_54_16
Theory : continuity
Home
Index