Nuprl Lemma : not-isl-assert-isr

x:Top Top. ((¬↑isl(x))  (↑isr(x)))


Proof




Definitions occuring in Statement :  assert: b isr: isr(x) isl: isl(x) top: Top all: x:A. B[x] not: ¬A implies:  Q union: left right
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T assert: b ifthenelse: if then else fi  btrue: tt true: True prop: uall: [x:A]. B[x]
Lemmas referenced :  not-isl-isr not_wf assert_wf isl_wf top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalRule cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination hypothesis natural_numberEquality isectElimination unionEquality

Latex:
\mforall{}x:Top  +  Top.  ((\mneg{}\muparrow{}isl(x))  {}\mRightarrow{}  (\muparrow{}isr(x)))



Date html generated: 2016_05_13-PM-03_20_29
Last ObjectModification: 2015_12_26-AM-09_10_50

Theory : union


Home Index