Nuprl Lemma : not-isl-assert-isr
∀x:Top + Top. ((¬↑isl(x)) 
⇒ (↑isr(x)))
Proof
Definitions occuring in Statement : 
assert: ↑b
, 
isr: isr(x)
, 
isl: isl(x)
, 
top: Top
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
union: left + right
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
true: True
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
not-isl-isr, 
not_wf, 
assert_wf, 
isl_wf, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalRule, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
natural_numberEquality, 
isectElimination, 
unionEquality
Latex:
\mforall{}x:Top  +  Top.  ((\mneg{}\muparrow{}isl(x))  {}\mRightarrow{}  (\muparrow{}isr(x)))
Date html generated:
2016_05_13-PM-03_20_29
Last ObjectModification:
2015_12_26-AM-09_10_50
Theory : union
Home
Index