Step
*
of Lemma
weak-continuity-implies-strong-cantor-unique
∀F:(ℕ ⟶ 𝔹) ⟶ ℕ
  ∃M:n:ℕ ⟶ (ℕn ⟶ 𝔹) ⟶ (ℕ?)
   ∀f:ℕ ⟶ 𝔹. ∃n:ℕ. (((M n f) = (inl (F f)) ∈ (ℕ?)) ∧ (∀m:ℕ. ((↑isl(M m f)) 
⇒ (m = n ∈ ℕ))))
BY
{ ((UnivCD THENA Auto) THEN (InstLemma `weak-continuity-implies-strong-cantor` [⌜F⌝]⋅ THENA Auto) THEN ExRepD) }
1
1. F : (ℕ ⟶ 𝔹) ⟶ ℕ
2. M : n:ℕ ⟶ (ℕn ⟶ 𝔹) ⟶ (ℕ?)
3. ∀f:ℕ ⟶ 𝔹. ((∃n:ℕ. ((M n f) = (inl (F f)) ∈ (ℕ?))) ∧ (∀n:ℕ. (M n f) = (inl (F f)) ∈ (ℕ?) supposing ↑isl(M n f)))
⊢ ∃M:n:ℕ ⟶ (ℕn ⟶ 𝔹) ⟶ (ℕ?)
   ∀f:ℕ ⟶ 𝔹. ∃n:ℕ. (((M n f) = (inl (F f)) ∈ (ℕ?)) ∧ (∀m:ℕ. ((↑isl(M m f)) 
⇒ (m = n ∈ ℕ))))
Latex:
Latex:
\mforall{}F:(\mBbbN{}  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  \mBbbN{}
    \mexists{}M:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  (\mBbbN{}?)
      \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}.  \mexists{}n:\mBbbN{}.  (((M  n  f)  =  (inl  (F  f)))  \mwedge{}  (\mforall{}m:\mBbbN{}.  ((\muparrow{}isl(M  m  f))  {}\mRightarrow{}  (m  =  n))))
By
Latex:
((UnivCD  THENA  Auto)
  THEN  (InstLemma  `weak-continuity-implies-strong-cantor`  [\mkleeneopen{}F\mkleeneclose{}]\mcdot{}  THENA  Auto)
  THEN  ExRepD)
Home
Index