Nuprl Lemma : fan_theorem

[X:n:ℕ ⟶ (ℕn ⟶ 𝔹) ⟶ ℙ]
  (∀n:ℕ. ∀s:ℕn ⟶ 𝔹.  Dec(X[n;s]))  (∃k:ℕ. ∀f:ℕ ⟶ 𝔹. ∃n:ℕk. X[n;f]) supposing ∀f:ℕ ⟶ 𝔹(↓∃n:ℕX[n;f])


Proof




Definitions occuring in Statement :  int_seg: {i..j-} nat: bool: 𝔹 decidable: Dec(P) uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] exists: x:A. B[x] squash: T implies:  Q function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] squash: T implies:  Q sq_exists: x:A [B[x]] nat: so_lambda: λ2x.t[x] so_apply: x[s] exists: x:A. B[x] ge: i ≥  decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top and: P ∧ Q prop: int_seg: {i..j-} lelt: i ≤ j < k so_apply: x[s1;s2] le: A ≤ B subtype_rel: A ⊆B less_than': less_than'(a;b) less_than: a < b outl: outl(x)
Lemmas referenced :  simple_fan_theorem'-ext set-value-type equal_wf int-value-type nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf intformeq_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_wf istype-le decidable__lt intformless_wf int_formula_prop_less_lemma istype-less_than int_seg_properties int_seg_wf subtype_rel_function nat_wf bool_wf int_seg_subtype_nat istype-false subtype_rel_self istype-nat decidable_wf squash_wf int_seg_decide_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule Error :lambdaEquality_alt,  dependent_functionElimination imageElimination imageMemberEquality baseClosed Error :functionIsTypeImplies,  Error :inhabitedIsType,  rename independent_isectElimination Error :lambdaFormation_alt,  independent_functionElimination setElimination intEquality cutEval Error :dependent_set_memberEquality_alt,  equalityTransitivity equalitySymmetry Error :equalityIstype,  Error :universeIsType,  Error :dependent_pairFormation_alt,  natural_numberEquality unionElimination approximateComputation int_eqEquality Error :isect_memberEquality_alt,  voidElimination independent_pairFormation productElimination Error :productIsType,  because_Cache applyEquality Error :functionIsType,  instantiate universeEquality productEquality functionExtensionality functionEquality

Latex:
\mforall{}[X:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  \mBbbP{}]
    (\mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbB{}.    Dec(X[n;s]))  {}\mRightarrow{}  (\mexists{}k:\mBbbN{}.  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}.  \mexists{}n:\mBbbN{}k.  X[n;f]) 
    supposing  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}.  (\mdownarrow{}\mexists{}n:\mBbbN{}.  X[n;f])



Date html generated: 2019_06_20-PM-01_15_29
Last ObjectModification: 2019_01_27-PM-01_53_25

Theory : int_2


Home Index