Nuprl Lemma : simple_fan_theorem'-ext
∀[X:n:ℕ ⟶ (ℕn ⟶ 𝔹) ⟶ ℙ]
  (∀n:ℕ. ∀s:ℕn ⟶ 𝔹.  Dec(X[n;s])) ⇒ (∃k:ℕ [(∀f:ℕ ⟶ 𝔹. ∃n:ℕk. X[n;f])]) supposing ∀f:ℕ ⟶ 𝔹. (↓∃n:ℕ. X[n;f])
Proof
Definitions occuring in Statement : 
int_seg: {i..j-}, 
nat: ℕ, 
bool: 𝔹, 
decidable: Dec(P), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
so_apply: x[s1;s2], 
all: ∀x:A. B[x], 
sq_exists: ∃x:A [B[x]], 
exists: ∃x:A. B[x], 
squash: ↓T, 
implies: P ⇒ Q, 
function: x:A ⟶ B[x], 
natural_number: $n
Definitions unfolded in proof : 
member: t ∈ T, 
bottom: ⊥, 
seq-normalize: seq-normalize(n;s), 
FAN: FAN(d), 
has-value: (a)↓, 
not: ¬A, 
implies: P ⇒ Q, 
false: False, 
uall: ∀[x:A]. B[x], 
and: P ∧ Q, 
all: ∀x:A. B[x], 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
less_than: a < b, 
less_than': less_than'(a;b), 
top: Top, 
true: True, 
squash: ↓T, 
bfalse: ff, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
ifthenelse: if b then t else f fi , 
assert: ↑b, 
rev_implies: P ⇐ Q, 
iff: P ⇐⇒ Q, 
prop: ℙ, 
simple_fan_theorem', 
basic_bar_induction
Lemmas referenced : 
simple_fan_theorem', 
bottom_diverge, 
exception-not-bottom, 
has-value_wf_base, 
is-exception_wf, 
lt_int_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
istype-top, 
istype-void, 
strictness-apply, 
bottom-sqle, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
less_than_wf, 
istype-less_than, 
exception-not-value, 
value-type-has-value, 
int-value-type, 
basic_bar_induction
Rules used in proof : 
introduction, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
instantiate, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
thin, 
sqequalHypSubstitution, 
equalityTransitivity, 
equalitySymmetry, 
sqequalSqle, 
sqleRule, 
sqleReflexivity, 
divergentSqle, 
callbyvalueCallbyvalue, 
callbyvalueReduce, 
independent_functionElimination, 
voidElimination, 
callbyvalueExceptionCases, 
axiomSqleEquality, 
exceptionSqequal, 
baseApply, 
closedConclusion, 
baseClosed, 
hypothesisEquality, 
isectElimination, 
because_Cache, 
callbyvalueLess, 
productElimination, 
Error :inhabitedIsType, 
Error :lambdaFormation_alt, 
unionElimination, 
equalityElimination, 
independent_isectElimination, 
lessCases, 
Error :isect_memberFormation_alt, 
axiomSqEquality, 
Error :isect_memberEquality_alt, 
Error :isectIsTypeImplies, 
independent_pairFormation, 
natural_numberEquality, 
imageMemberEquality, 
imageElimination, 
Error :dependent_pairFormation_alt, 
Error :equalityIstype, 
promote_hyp, 
dependent_functionElimination, 
cumulativity, 
Error :universeIsType, 
lessExceptionCases, 
intEquality
Latex:
\mforall{}[X:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  \mBbbP{}]
    (\mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbB{}.    Dec(X[n;s]))  {}\mRightarrow{}  (\mexists{}k:\mBbbN{}  [(\mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}.  \mexists{}n:\mBbbN{}k.  X[n;f])]) 
    supposing  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}.  (\mdownarrow{}\mexists{}n:\mBbbN{}.  X[n;f])
Date html generated:
2019_06_20-AM-11_33_02
Last ObjectModification:
2019_03_26-AM-07_44_39
Theory : bool_1
Home
Index