Nuprl Lemma : simple_fan_theorem'-ext

[X:n:ℕ ⟶ (ℕn ⟶ 𝔹) ⟶ ℙ]
  (∀n:ℕ. ∀s:ℕn ⟶ 𝔹.  Dec(X[n;s]))  (∃k:ℕ [(∀f:ℕ ⟶ 𝔹. ∃n:ℕk. X[n;f])]) supposing ∀f:ℕ ⟶ 𝔹(↓∃n:ℕX[n;f])


Proof




Definitions occuring in Statement :  int_seg: {i..j-} nat: bool: 𝔹 decidable: Dec(P) uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] sq_exists: x:A [B[x]] exists: x:A. B[x] squash: T implies:  Q function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  member: t ∈ T bottom: seq-normalize: seq-normalize(n;s) FAN: FAN(d) has-value: (a)↓ not: ¬A implies:  Q false: False uall: [x:A]. B[x] and: P ∧ Q all: x:A. B[x] bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) uimplies: supposing a less_than: a < b less_than': less_than'(a;b) top: Top true: True squash: T bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb ifthenelse: if then else fi  assert: b rev_implies:  Q iff: ⇐⇒ Q prop: simple_fan_theorem' basic_bar_induction
Lemmas referenced :  simple_fan_theorem' bottom_diverge exception-not-bottom has-value_wf_base is-exception_wf lt_int_wf eqtt_to_assert assert_of_lt_int istype-top istype-void strictness-apply bottom-sqle eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf less_than_wf istype-less_than exception-not-value value-type-has-value int-value-type basic_bar_induction
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate extract_by_obid hypothesis sqequalRule thin sqequalHypSubstitution equalityTransitivity equalitySymmetry sqequalSqle sqleRule sqleReflexivity divergentSqle callbyvalueCallbyvalue callbyvalueReduce independent_functionElimination voidElimination callbyvalueExceptionCases axiomSqleEquality exceptionSqequal baseApply closedConclusion baseClosed hypothesisEquality isectElimination because_Cache callbyvalueLess productElimination Error :inhabitedIsType,  Error :lambdaFormation_alt,  unionElimination equalityElimination independent_isectElimination lessCases Error :isect_memberFormation_alt,  axiomSqEquality Error :isect_memberEquality_alt,  Error :isectIsTypeImplies,  independent_pairFormation natural_numberEquality imageMemberEquality imageElimination Error :dependent_pairFormation_alt,  Error :equalityIstype,  promote_hyp dependent_functionElimination cumulativity Error :universeIsType,  lessExceptionCases intEquality

Latex:
\mforall{}[X:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  \mBbbP{}]
    (\mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbB{}.    Dec(X[n;s]))  {}\mRightarrow{}  (\mexists{}k:\mBbbN{}  [(\mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}.  \mexists{}n:\mBbbN{}k.  X[n;f])]) 
    supposing  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}.  (\mdownarrow{}\mexists{}n:\mBbbN{}.  X[n;f])



Date html generated: 2019_06_20-AM-11_33_02
Last ObjectModification: 2019_03_26-AM-07_44_39

Theory : bool_1


Home Index