Nuprl Lemma : simple_fan_theorem'

[X:n:ℕ ⟶ (ℕn ⟶ 𝔹) ⟶ ℙ]
  (∀n:ℕ. ∀s:ℕn ⟶ 𝔹.  Dec(X[n;s]))  (∃k:ℕ [(∀f:ℕ ⟶ 𝔹. ∃n:ℕk. X[n;f])]) supposing ∀f:ℕ ⟶ 𝔹(↓∃n:ℕX[n;f])


Proof




Definitions occuring in Statement :  int_seg: {i..j-} nat: bool: 𝔹 decidable: Dec(P) uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] sq_exists: x:A [B[x]] exists: x:A. B[x] squash: T implies:  Q function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  true: True top: Top subtract: m uiff: uiff(P;Q) rev_implies:  Q iff: ⇐⇒ Q or: P ∨ Q decidable: Dec(P) so_apply: x[s] not: ¬A false: False less_than': less_than'(a;b) le: A ≤ B subtype_rel: A ⊆B prop: and: P ∧ Q lelt: i ≤ j < k sq_stable: SqStable(P) guard: {T} int_seg: {i..j-} so_apply: x[s1;s2] nat: so_lambda: λ2x.t[x] so_lambda: λ2y.t[x; y] implies:  Q squash: T all: x:A. B[x] member: t ∈ T uimplies: supposing a uall: [x:A]. B[x] less_than: a < b exists: x:A. B[x] sq_exists: x:A [B[x]] assert: b ifthenelse: if then else fi  bnot: ¬bb sq_type: SQType(T) bfalse: ff btrue: tt it: unit: Unit bool: 𝔹 seq-append: seq-append(n;m;s1;s2) cand: c∧ B seq-adjoin: s++t ge: i ≥  nat_plus: +
Lemmas referenced :  squash_wf decidable_wf seq-adjoin_wf le-add-cancel add-zero add_functionality_wrt_le add-commutes add-swap add-associates minus-one-mul-top zero-add minus-one-mul minus-add condition-implies-le not-le-2 decidable__le subtype_rel_self subtype_rel_function false_wf int_seg_subtype_nat seq-append_wf le_wf equal_wf sq_stable__le add_nat_wf int_seg_wf exists_wf all_wf sq_exists_wf basic_bar_induction bool_wf nat_wf less_than_wf and_wf less-iff-le not-lt-2 assert-bnot bool_subtype_base subtype_base_sq bool_cases_sqequal eqff_to_assert top_wf assert_of_lt_int eqtt_to_assert lt_int_wf btrue_wf bfalse_wf imax_wf imax_nat istype-false istype-le istype-void add-member-int_seg2 subtract_wf le-add-cancel2 istype-less_than ifthenelse_wf le_int_wf assert_of_le_int decidable__lt minus-minus iff_weakening_uiff assert_wf true_wf istype-int add_functionality_wrt_eq imax_unfold iff_weakening_equal istype-top le_weakening2 add-is-int-iff set_subtype_base int_subtype_base le_reflexive minus-zero one-mul add-mul-special zero-mul two-mul mul-distributes-right omega-shadow mul-distributes mul-associates mul-commutes le-add-cancel-alt nat_properties iff_imp_equal_bool not-less-implies-equal sq_stable__and sq_stable__less_than member-less_than decidable__int_equal not-equal-2 less_than_irreflexivity less_than_transitivity1
Rules used in proof :  universeEquality cumulativity minusEquality intEquality voidEquality isect_memberEquality voidElimination unionElimination independent_pairFormation independent_isectElimination equalitySymmetry equalityTransitivity productElimination independent_functionElimination addEquality dependent_set_memberEquality functionExtensionality applyEquality setElimination natural_numberEquality because_Cache isectElimination lambdaFormation rename extract_by_obid functionEquality baseClosed imageMemberEquality hypothesis imageElimination hypothesisEquality thin dependent_functionElimination lambdaEquality sqequalHypSubstitution sqequalRule introduction cut isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution dependent_pairFormation dependent_set_memberFormation levelHypothesis hyp_replacement addLevel instantiate promote_hyp axiomSqEquality lessCases equalityElimination Error :dependent_set_memberFormation_alt,  Error :dependent_set_memberEquality_alt,  Error :lambdaFormation_alt,  Error :inhabitedIsType,  Error :equalityIstype,  Error :functionIsType,  Error :universeIsType,  Error :productIsType,  Error :lambdaEquality_alt,  Error :isect_memberEquality_alt,  Error :dependent_pairFormation_alt,  closedConclusion Error :functionExtensionality_alt,  Error :isect_memberFormation_alt,  Error :isectIsTypeImplies,  multiplyEquality baseApply Error :functionIsTypeImplies

Latex:
\mforall{}[X:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  \mBbbP{}]
    (\mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbB{}.    Dec(X[n;s]))  {}\mRightarrow{}  (\mexists{}k:\mBbbN{}  [(\mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}.  \mexists{}n:\mBbbN{}k.  X[n;f])]) 
    supposing  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}.  (\mdownarrow{}\mexists{}n:\mBbbN{}.  X[n;f])



Date html generated: 2019_06_20-AM-11_32_53
Last ObjectModification: 2019_01_27-PM-01_30_43

Theory : bool_1


Home Index