Nuprl Lemma : assert-b-exists

n:ℕ. ∀P:ℕn ⟶ 𝔹.  (↑(∃i<n.P[i])_b ⇐⇒ ∃i:ℕn. (↑P[i]))


Proof




Definitions occuring in Statement :  b-exists: (∃i<n.P[i])_b int_seg: {i..j-} nat: assert: b bool: 𝔹 so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] b-exists: (∃i<n.P[i])_b member: t ∈ T top: Top assert: b ifthenelse: if then else fi  bfalse: ff iff: ⇐⇒ Q and: P ∧ Q implies:  Q false: False prop: rev_implies:  Q exists: x:A. B[x] int_seg: {i..j-} lelt: i ≤ j < k uall: [x:A]. B[x] guard: {T} uimplies: supposing a so_apply: x[s] subtype_rel: A ⊆B so_lambda: λ2x.t[x] le: A ≤ B decidable: Dec(P) or: P ∨ Q not: ¬A uiff: uiff(P;Q) subtract: m less_than': less_than'(a;b) true: True istype: istype(T) nat: bool: 𝔹 unit: Unit it: btrue: tt sq_type: SQType(T)
Lemmas referenced :  primrec0_lemma istype-void false_wf less_than_transitivity1 less_than_irreflexivity int_seg_wf assert_wf bool_wf subtype_rel_dep_function subtype_rel_sets and_wf le_wf less_than_wf subtract_wf decidable__lt istype-false not-lt-2 less-iff-le condition-implies-le add-associates minus-add minus-one-mul add-swap minus-one-mul-top add-commutes add_functionality_wrt_le le-add-cancel2 primrec-unroll b-exists_wf decidable__le not-le-2 zero-add minus-minus add-zero le-add-cancel primrec-wf2 all_wf iff_wf exists_wf nat_wf lt_int_wf equal-wf-base int_subtype_base bfalse_wf assert_witness le_int_wf bnot_wf iff_weakening_uiff bor_wf add-mul-special zero-mul le-add-cancel-alt or_wf assert_of_bor uiff_transitivity eqtt_to_assert assert_of_lt_int eqff_to_assert assert_functionality_wrt_uiff bnot_of_lt_int assert_of_le_int decidable__int_equal le_weakening subtype_base_sq not-equal-2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  cut thin sqequalRule introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination Error :isect_memberEquality_alt,  voidElimination hypothesis independent_pairFormation Error :universeIsType,  productElimination setElimination rename isectElimination hypothesisEquality natural_numberEquality independent_isectElimination independent_functionElimination Error :productIsType,  applyEquality Error :functionIsType,  Error :lambdaEquality_alt,  because_Cache intEquality Error :inhabitedIsType,  Error :setIsType,  unionElimination addEquality minusEquality Error :dependent_set_memberEquality_alt,  equalityTransitivity equalitySymmetry functionExtensionality functionEquality baseApply closedConclusion baseClosed Error :inlFormation_alt,  Error :inrFormation_alt,  Error :unionIsType,  promote_hyp equalityElimination Error :equalityIsType1,  Error :dependent_pairFormation_alt,  instantiate

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}P:\mBbbN{}n  {}\mrightarrow{}  \mBbbB{}.    (\muparrow{}(\mexists{}i<n.P[i])\_b  \mLeftarrow{}{}\mRightarrow{}  \mexists{}i:\mBbbN{}n.  (\muparrow{}P[i]))



Date html generated: 2019_06_20-AM-11_32_34
Last ObjectModification: 2018_09_28-PM-10_56_45

Theory : bool_1


Home Index