Nuprl Lemma : assert-b-exists
∀n:ℕ. ∀P:ℕn ⟶ 𝔹.  (↑(∃i<n.P[i])_b 
⇐⇒ ∃i:ℕn. (↑P[i]))
Proof
Definitions occuring in Statement : 
b-exists: (∃i<n.P[i])_b
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
assert: ↑b
, 
bool: 𝔹
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
b-exists: (∃i<n.P[i])_b
, 
member: t ∈ T
, 
top: Top
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
false: False
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
exists: ∃x:A. B[x]
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
uall: ∀[x:A]. B[x]
, 
guard: {T}
, 
uimplies: b supposing a
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
le: A ≤ B
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
uiff: uiff(P;Q)
, 
subtract: n - m
, 
less_than': less_than'(a;b)
, 
true: True
, 
istype: istype(T)
, 
nat: ℕ
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
sq_type: SQType(T)
Lemmas referenced : 
primrec0_lemma, 
istype-void, 
false_wf, 
less_than_transitivity1, 
less_than_irreflexivity, 
int_seg_wf, 
assert_wf, 
bool_wf, 
subtype_rel_dep_function, 
subtype_rel_sets, 
and_wf, 
le_wf, 
less_than_wf, 
subtract_wf, 
decidable__lt, 
istype-false, 
not-lt-2, 
less-iff-le, 
condition-implies-le, 
add-associates, 
minus-add, 
minus-one-mul, 
add-swap, 
minus-one-mul-top, 
add-commutes, 
add_functionality_wrt_le, 
le-add-cancel2, 
primrec-unroll, 
b-exists_wf, 
decidable__le, 
not-le-2, 
zero-add, 
minus-minus, 
add-zero, 
le-add-cancel, 
primrec-wf2, 
all_wf, 
iff_wf, 
exists_wf, 
nat_wf, 
lt_int_wf, 
equal-wf-base, 
int_subtype_base, 
bfalse_wf, 
assert_witness, 
le_int_wf, 
bnot_wf, 
iff_weakening_uiff, 
bor_wf, 
add-mul-special, 
zero-mul, 
le-add-cancel-alt, 
or_wf, 
assert_of_bor, 
uiff_transitivity, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
assert_functionality_wrt_uiff, 
bnot_of_lt_int, 
assert_of_le_int, 
decidable__int_equal, 
le_weakening, 
subtype_base_sq, 
not-equal-2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaFormation_alt, 
cut, 
thin, 
sqequalRule, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
Error :isect_memberEquality_alt, 
voidElimination, 
hypothesis, 
independent_pairFormation, 
Error :universeIsType, 
productElimination, 
setElimination, 
rename, 
isectElimination, 
hypothesisEquality, 
natural_numberEquality, 
independent_isectElimination, 
independent_functionElimination, 
Error :productIsType, 
applyEquality, 
Error :functionIsType, 
Error :lambdaEquality_alt, 
because_Cache, 
intEquality, 
Error :inhabitedIsType, 
Error :setIsType, 
unionElimination, 
addEquality, 
minusEquality, 
Error :dependent_set_memberEquality_alt, 
equalityTransitivity, 
equalitySymmetry, 
functionExtensionality, 
functionEquality, 
baseApply, 
closedConclusion, 
baseClosed, 
Error :inlFormation_alt, 
Error :inrFormation_alt, 
Error :unionIsType, 
promote_hyp, 
equalityElimination, 
Error :equalityIsType1, 
Error :dependent_pairFormation_alt, 
instantiate
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}P:\mBbbN{}n  {}\mrightarrow{}  \mBbbB{}.    (\muparrow{}(\mexists{}i<n.P[i])\_b  \mLeftarrow{}{}\mRightarrow{}  \mexists{}i:\mBbbN{}n.  (\muparrow{}P[i]))
Date html generated:
2019_06_20-AM-11_32_34
Last ObjectModification:
2018_09_28-PM-10_56_45
Theory : bool_1
Home
Index