Nuprl Lemma : b-exists_wf

[n:ℕ]. ∀[P:ℕn ⟶ 𝔹].  ((∃i<n.P[i])_b ∈ 𝔹)


Proof




Definitions occuring in Statement :  b-exists: (∃i<n.P[i])_b int_seg: {i..j-} nat: bool: 𝔹 uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T b-exists: (∃i<n.P[i])_b so_apply: x[s] nat:
Lemmas referenced :  primrec_wf bool_wf bfalse_wf bor_wf int_seg_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis hypothesisEquality lambdaEquality applyEquality natural_numberEquality setElimination rename axiomEquality equalityTransitivity equalitySymmetry functionEquality isect_memberEquality because_Cache

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[P:\mBbbN{}n  {}\mrightarrow{}  \mBbbB{}].    ((\mexists{}i<n.P[i])\_b  \mmember{}  \mBbbB{})



Date html generated: 2016_05_13-PM-04_00_37
Last ObjectModification: 2015_12_26-AM-10_49_31

Theory : bool_1


Home Index