Nuprl Lemma : decidable-all-finite

[T:Type]. (finite(T)  (∀[P:T ⟶ ℙ]. ((∀t:T. Dec(P[t]))  Dec(∀t:T. P[t]))))


Proof




Definitions occuring in Statement :  finite: finite(T) decidable: Dec(P) uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  guard: {T} prop: false: False subtype_rel: A ⊆B exists: x:A. B[x] not: ¬A or: P ∨ Q decidable: Dec(P) all: x:A. B[x] so_apply: x[s] so_lambda: λ2x.t[x] implies:  Q member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  subtype_rel_self istype-universe finite_wf decidable_wf istype-void decidable__not not_wf decidable-exists-finite
Rules used in proof :  productElimination Error :inrFormation_alt,  instantiate universeEquality voidElimination Error :functionIsType,  Error :dependent_pairFormation_alt,  Error :inlFormation_alt,  unionElimination because_Cache dependent_functionElimination Error :universeIsType,  applyEquality Error :lambdaEquality_alt,  sqequalRule independent_functionElimination Error :lambdaFormation_alt,  hypothesisEquality thin isectElimination sqequalHypSubstitution hypothesis Error :isect_memberFormation_alt,  sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution extract_by_obid introduction cut

Latex:
\mforall{}[T:Type].  (finite(T)  {}\mRightarrow{}  (\mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].  ((\mforall{}t:T.  Dec(P[t]))  {}\mRightarrow{}  Dec(\mforall{}t:T.  P[t]))))



Date html generated: 2019_06_20-PM-02_18_51
Last ObjectModification: 2019_06_12-PM-02_54_17

Theory : equipollence!!cardinality!


Home Index