Nuprl Lemma : decidable-all-finite
∀[T:Type]. (finite(T) ⇒ (∀[P:T ⟶ ℙ]. ((∀t:T. Dec(P[t])) ⇒ Dec(∀t:T. P[t]))))
Proof
Definitions occuring in Statement : 
finite: finite(T), 
decidable: Dec(P), 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
so_apply: x[s], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
guard: {T}, 
prop: ℙ, 
false: False, 
subtype_rel: A ⊆r B, 
exists: ∃x:A. B[x], 
not: ¬A, 
or: P ∨ Q, 
decidable: Dec(P), 
all: ∀x:A. B[x], 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
subtype_rel_self, 
istype-universe, 
finite_wf, 
decidable_wf, 
istype-void, 
decidable__not, 
not_wf, 
decidable-exists-finite
Rules used in proof : 
productElimination, 
Error :inrFormation_alt, 
instantiate, 
universeEquality, 
voidElimination, 
Error :functionIsType, 
Error :dependent_pairFormation_alt, 
Error :inlFormation_alt, 
unionElimination, 
because_Cache, 
dependent_functionElimination, 
Error :universeIsType, 
applyEquality, 
Error :lambdaEquality_alt, 
sqequalRule, 
independent_functionElimination, 
Error :lambdaFormation_alt, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
hypothesis, 
Error :isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
extract_by_obid, 
introduction, 
cut
Latex:
\mforall{}[T:Type].  (finite(T)  {}\mRightarrow{}  (\mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].  ((\mforall{}t:T.  Dec(P[t]))  {}\mRightarrow{}  Dec(\mforall{}t:T.  P[t]))))
 Date html generated: 
2019_06_20-PM-02_18_51
 Last ObjectModification: 
2019_06_12-PM-02_54_17
Theory : equipollence!!cardinality!
Home
Index