Nuprl Lemma : finite-bool
finite(𝔹)
Proof
Definitions occuring in Statement : 
finite: finite(T), 
bool: 𝔹
Definitions unfolded in proof : 
bool: 𝔹, 
member: t ∈ T, 
and: P ∧ Q, 
cand: A c∧ B, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
implies: P ⇒ Q
Lemmas referenced : 
unit_wf2, 
finite-unit, 
finite-union
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
independent_pairFormation, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
productElimination, 
independent_functionElimination
Latex:
finite(\mBbbB{})
Date html generated:
2016_10_21-AM-11_00_56
Last ObjectModification:
2016_08_07-PM-11_28_16
Theory : equipollence!!cardinality!
Home
Index